Low-voltage switchgear

 and controlgearPart 5-2: Control circuitalelices and switching eleppans Proximity switpes

National foreword

This British Standard is the UK implementation of EN 60947-5-2:2007+A1:2012. It is identical to IEC 609 47 Z2:207 incorporating amendment 1:2012. It supersedes PGED 947-5-2:2007 which will be withdrawn on 1 November 2015
The start and finish of text introducga. ©tered by amendment is indicated in the text by tags. Trsindicating changes to IEC text carry the number of the IEC aponnent. For example, text altered by IEC

The UK participation in its preparation was entrusted by Technical Commiret PEL/17, Switchgear, controlgear, and HV-LV co-ordination, to Supabmmittee PEL/17/2, Low voltage switchgear and controlgear.
A list of organizations represented on this subcommittee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 29 February 2008
© The British Standards Institution 2013. Published by BSI Standards Limited 2013

Amendments/corrigenda issued since publication

Date	Comments
30 April 2008	Correction to supersession details
31 March 2013	Implementation of IEC amendment 1:2012 with CENELEC endorsement A1:2012: Annex ZA updated

English version

Appareillage à basse tension Partie 5-2: Appareils et éléments de commutation pour circuits de commande Détecteurs de proximité
(CEI 60947-5-2:2007)

Niederspannungsschaltgeräte Teil 5-2: Steuergeräte und Schaltelemente Näherungsschalter (IEC 60947-5-2:2007)

This European Standard was approved by CENELEC on 2007-11-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
Central Secretariat: rue de Stassart 35, B-1050 Brussels

[^0]
Foreword

The text of document 17B/1570/FDIS, future edition 3 of IEC 60947-5-2, prepared by SC 17B, Low-voltage switchgear and controlgear, of IEC TC 17, Switchgear and controlgear, was submitted to th IEC-CENELEC parallel vote and was approved by CENELEC as EN 60947-5-2 on 2007-11-01.

This European Standard supersedes EN 60947-5-2:1998 + A1:1999 + A2:2004.
The main changes with respect to EN 60947-5-2:1998 are as follows:

- modification of Table 3;
- modifications of voltage dips and voltage interruptionsjm@fity tests, in Table 8;
- modification of status of Annex A, now informpaxid

The following dates were fixed: $+\ldots \times$.

- latest date by which the EMhas to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2008-08-01
- latest date by which the national standards conflicting with the EN have to be withdrawn
(dow) 2010-11-01

This European Standard has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association and covers essential requirements of EC Directive 2004/108/EC. See Annex ZZ.

Annexes $Z A$ and $Z Z$ have been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 60947-5-2:2007 was approved by CENELEC as a European Standard without any modification.

Foreword to amendment A1

The text of document 17B/1733/CDV, future amendment 1 to edition 3 of IEC 60947-5-2, preparerpa SC17B "Low-voltage switchgear and controlgear" of IEC/TC 17 "Switchgear and controlrear was submitted to the IEC-CENELEC parallel vote and approved by CEEC as EN 60947-5-2:2007/A1:2012.

The following dates are fixed:

- latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting winhe document have to be withdrawn
(dow) 2015-11-01

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

This standard covers the Principle Elements of the Safety Objectives for Electrical Equipment Designed for Use within Certain Voltage Limits (LVD - 2006/95/EC).

This document has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive.

Endorsement notice

The text of the International Standard IEC 60947-5-2:2007/A1:2012 was approved by CENELEC as a European Standard without any modification.

CONTENTS

1 Generaln1.1 Scope and object 8
1.2 Normative references 8
2 Definitions 10
2.1 Basic definitions 12
2.2 Parts of a proximity switch 13
2.3 Operation of a proximity switch 15
2.4 Switching element characteristig 17
3 Classification 20
3.1 Classification ascotarto sensing means 20
3.2 Classification acrording to the mechanical installation 20
3.3 Classification according to the construction form and size 20
3.4 Classification according to switching element function 20
3.5 Classification according to type of output 20
3.6 Classification according to method of connection 20
4 Characteristics. 20
4.1 Summary of characteristics 20
4.2 Operating conditions 21
4.3 Rated and limiting values for the proximity switch and switching element(s) 23
4.4 Utilization categories for the switching element 24
5 Product information 25
5.1 Nature of information - Identificatoin 25
5.2 Marking 26
5.3 Instruction for installation, operation and maintenance 26
6 Normal service, mounting and transport conditions 26
6.1 Normal service conditions 26
6.2 Conditions during transport and storage 27
6.3 Mounting 27
7 Constructional and performance requirements 27
7.1 Constructional requirements 27
7.2 Performance requirements. 30
7.3 Physical dimensions 40
7.4 Shock and vibration 40
8 Tests 40
8.1 Kinds of tests 41
8.2 Compliance with constructional requirements 41
8.3 Performances 41
8.4 Testing of operating distances 50
8.5 Testing for the frequency of operating cycles 54
8.6 Verification of the electromagnetic compatibility 58
8.7 Test results and test report 59
Annex A (informative) Typical dimensions and operating distances of proximity
switches
Annex B (normative) Class II proximity switches insulated by encapsulation - Requirements and tests 86
Annex C (normative) Additional requirements for proximity switches with int 0 connected cables 90
Annex D (normative) Integral connectors for plug-in proximity ryiteces. 93
Annex E (normative) Additional requirements for proxilnilntches suitable for use in strong magnetic fields 98
Annex F (informative) Symbols for proximjand 103
Annex ZA (normative) Normative refelances to international publications with their corresponding European publiza 10 104
Annex ZZ (informative) C\&rang of Essential Requirements of EC Directives 106
Figure 1 - Sensing range and operating range of photoelectric proximity switches (see 7.2.1.3 and 8.4). 16
Figure 2 - Ultrasonic proximity switch operating distances 18
Figure 3 - Relationship between operating distances of inductive and capacitive proximity switches (see 4.2.1, 7.2.1.3 and 8.4.1) 22
Figure 4 - Relationship between operating distances of ultrasonic proximity switches (see 4.2.2, 7.2.1.3 and 8.4.1) 22
Figure 5 - Method of measuring the operating distance (8.3.2.1 and 8.4.1) 43
Figure 6 - Test circuit for the verification of time delay before availability (see 7.2.1.7 and 8.3.3.2.1) 44
Figure 7 - Signal output across load in Figure 6 (see 8.3.3.2.1) 45
Figure 8 - Test circuit for the verification of minimum operational current OFF-state current, voltage drop and independent snap action (see 8.3.3.2.2, 8.3.3.2.3, 8.3.3.2.4 and 8.3.3.2.5). 46
Figure 9 - Test circuit for the verification of making and breaking capability (see 8.3.3.5) 49
Figure 10 - Short-circuit testing (see 8.3.4.2) 50
Figure 11 - Testing of the sensing range (see 8.4) 53
Figure 12 - Methods for measuring the operating frequency of inductive, capacitive and non-mechanical magnetic proximity switches (if applicable) 54
Figure 13 - Methods for measuring the operating frequency f, ultrasonic proximity switch 55
Figure 14 - Output signal of direct current proximity switch during the measurement of operating frequency f 55
Figure 15 - Measurement means for turn-on time $t_{\text {on }}$ and turn-off time $t_{\text {off }}$ 56
Figure 16 - Turn-on time $t_{\text {on }}$ measurement. 57
Figure 17 - Turn-off time $t_{\text {off }}$ measurement 57
Figure A. 1 (IA) - Dimensions 60
Figure A. 2 (IA) - Installation (mounting) 62
Figure A. 1 (IB) - Dimensions 63
Figure A. 2 (IB) - Installation in damping material 64
Figure A. 1 (IC) - Dimensions in millimetres 65
Figure A.1.2 (IC) - Dimensions in millimetres 66
Figure A.1.3 (IC) - Dimensions in millimetres 66
Figure A.1.4 (IC) - Dimensions in millimetres 67
BS EN 60947-5-2:2007+A1:2012
Figure A. 2 (IC) - Installation of a I1C proximity switch in damping material 68
Figure A. 3 (IC) - Installation of I2C35 in damping material 69
Figure A. 1 (ID) - Dimensions
Figure A. 2 (ID) - Installation of I2D in damping material18
Figure A. 1 (CA) - Dimensions 72
Figure A. 2 (CA) - Installation (mounting) 73
Figure A. 1 (CC) a - Dimensions, type C30 in millimetres 75
Figure A. 1 (CC) b - Dimensions, type C40 in millimetres in 76
Figure A. 2 (CC) - Installation (mounting) 77
Figure A. 1 (CD) - Dimensions in millimetra N N 78
Figure A. 2 (CD) - Installation (mount ng) 79
Figure A. 1 (UA) - Dimensfentr 80
Figure A. 1 (UC) - Dimensions of type U3C40 82
Figure A. 1 (UD) - Dimensions of type U3D80 in millimetres 84
Figure B. 1 - Encapsulated device 87
Figure B. 2 - Test device 89
Figure D. 1 - M12 $\left.{ }^{A_{1}}\right\rangle$ thread $\left\langle{ }_{1}\right.$ 3-pin integral connector for a.c. proximity switches 93
Figure D. 2 - M12 $\left.\bar{A}_{1}\right\rangle$ thread $\left\langle\mathbb{A}_{1} 5\right.$-pin integral connector for d.c. proximity switches 94
 94
Figure D. $4-8 \mathrm{~mm}$ [$\left.\boldsymbol{\Lambda}_{1}\right\rangle$ thread $\left\langle{ }_{1}{ }_{1}\right.$ 4-pin integral connector for d.c. proximity switches 95
Figure D. 5 - M12 [A1] thread $\left\langle{ }_{A_{1}}\right]$ 4-pin integral connector for a.c. proximity switches 95
Figure D. $6-\mathrm{M} 12\left[{ }_{1}\right\rangle$ thread ${ }_{A_{1}}$ 5-pin integral connector for a.c. proximity switches 96
Figure D. 7 - M12 $\left.{ }^{A_{1}}\right\rangle$ thread $\left\langle{ }^{A_{1}}\right.$ 6-pin integral connector for a.c. proximity switches 96
Figure D. 8 - M5 thread 4-pin/3-pin integral connector for d.c. proximity switches 97
Figure E. 1 - Examples of test configuration for verification of the immunity to an alternating field 101
Figure E. 2 - Example of test configuration for verification of the immunity in a constant magnetic field 102
Figure F. 1 - Examples of symbols for proximity switches 103
Table 1 - Classification of proximity switches 19
Table 2 - Utilization categories for switching elements 25
Table 3 - Connection and wiring identification 29
Table 4 - Verification of making and breaking capacities of switching elements under normal conditions corresponding to the utilization categories a 35
Table 5 - Verification of making and breaking capacities of switching elements under abnormal conditions corresponding to the utilization categories a 36
Table 7 - Acceptance criteria 37
Table 8 - Immunity tests 38
Table 6 - Test voltages 48
Table A. 1 (IA) - Dimensions in millimetres 61
Table A. 2 (IA) - Rated operating distances in millimetres 61
Table A. 1 (IB) - Dimensions in millimetres 63
Table A. 2 (IB) - Rated operating distance in millimetres 64
Table A. 2 (IC) - Rated operating distance in millimetres 67
Table A. 1 (ID) - Dimensions in millimetres 70
Table A. 2 (ID) - Rated operating distances in millimetres
Table A. 1 (CA) - Dimensions in millimetres71
Table A. 2 (CA) - Rated operating distances in millimetres 73
Table A. 2 (CC) - Rated operational distance in millimetres 76
Table A. 1 (UA) - Dimensions in millimetres 80
Table A. 2 (UA) - Requirements for sensing range in millin* PR 81
Table A. 1 (UC) - Requirements for sensing range in ©hintetres 82
Table A. 2 (UD) - Requirements for sensing Nn millimetres 85

LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR -

Part 5-2: Control circuit devices and switching elements Proximity switches

1 General

The provisions of the general rules in IEC POPA T are applicable to this standard, where specifically called for. General rules causpad subclauses thus applicable, as well as tables, figures and annexes, are identified blN Alerences to IEC 60947-1, e.g. subclause 7.1.9.3 of IEC 60947-1 or Annex C of IEf Pog471.

Clauses 1 to 8 contain the general requirements. Specific requirements for the various types of proximity switches are given in Annex A.

1.1 Scope and object

This part of IEC 60947 applies to inductive and capacitive proximity switches that sense the presence of metallic and/or non-metallic objects, ultrasonic proximity switches that sense the presence of sound reflecting objects, photoelectric proximity switches that sense the presence of objects and non-mechanical magnetic proximity switches that sense the presence of objects with a magnetic field.

These proximity switches are self-contained, have semiconductor switching elements(s) and are intended to be connected to circuits, the rated voltage of which does not exceed 250 V $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ a.c. or 300 V d.c. This Standard is not intended to cover proximity switches with analogue outputs.

The object of this standard is to state for proximity switches:

- definitions;
- classification;
- characteristics;
- product information;
- normal service, mounting and transport conditions;
- constructional and performance requirements;
- tests to verify rated characteristics.

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050(441):1984, International Electrotechnical Vocabulary (IEV) - Chapter 441: Switchgear, controlgear and fuses
Amendment 1 (2000)
[14] IEC 60068-2-6:2007, Environmental testing - Part 2-6: Tests - Test Fc: Vibration (sinusoidal)
[A1] IEC 60068-2-27:2008, Environmental testing - Part 2-27: Tests - Test Ea and guidance: Shock ${ }^{\text {A }}$ (12 h + 12 h cycle)

IEC 60364 (all parts), Low-voltage electrical installations
[A1] IEC 60445:2010, Basic and safety principles for man-machire aerface, marking and identification - Identification of equipment terminals, conductormations and conductors A_{1}
(A1) IEC 60947-1:2007, Low-voltage switchgear and cpn OXear - Part 1: General rules
Amendment 1:2010
IEC 61000-3-2:2005, Electromagne did Compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissiopstet (idment input current ≤ 16 A per phase)
Amendment 1:2008
Amendment 2:2009

IEC 61000-3-3:2008, Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

IEC 61000-4-2:2008, Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test

IEC 61000-4-3:2006, Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test Amendment 1:2007
Amendment 2:2010 [田]
IEC 61000-4-4:2004, Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test
[11) IEC 61000-4-6:2008, Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields

IEC 61000-4-8:2009, Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test $\left\langle\mathbb{A}_{1}\right.$

IEC 61000-4-11:2004, Electromagnetic compatibility (EMC) - Part 4-11: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests
[11) IEC 61000-4-13:2002, Electromagnetic compatibility (EMC) - Part 4-13: Testing and measurement techniques - Harmonics and interharmonics including mains signalling at a.c. power port, low-frequency immunity tests
Amendment 1:2009 © ${ }^{(1)}$
[1] IEC 61076-2 (all parts), Connectors for electronic equipment - Product requirements - Part 2: Circular connectors $\left\langle{ }_{1}\right.$

IEC 61140:2001, Protection against electric shock - Common aspects for installation and equipment
Amendment 1 (2004)
[1] CISPR 11:2009, Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement
Amendment 1:2010 ${ }^{\text {A }}$ •
[ब1] ISO 630 (all parts), Structural steels \mathbb{A}_{1}

2 Definitions

Clause 2 of IEC 60947-1 applies with the following additions:
Blind zone 2.3.1.3
Break function 2.4.1.2

C
Capacitive proximity switch 2.1.1.2
Currents (I) 2.4.5
Damping material 2.2.5
Differential travel (H) 2.3 .5
Direct operated proximity switch 2.1.1.6
E
Effective operating distance $\left(s_{r}\right)$ 2.3.1.5
Embeddable proximity switch 2.2.9
Emitter. 2.2.12
Excess gain for a photoelectric proximity switch 2.4.6
F
Free zone 2.2.4
Frequency of operating cycle (f) 2.4.3
I
Independent (snap) action 2.4.2
Indirect operated proximity switch 2.1.1.7
Inductive proximity switch 2.1.1.1
Lateral approach 2.3.2
M
Make function 2.4.1.1
Make-break, or changeover function 2.4.1.3
Maximum operating distance 2.3.1.2.2 2.3.1.2.1Minimum operating distance

Minimum operational current $\left(I_{\mathrm{m}}\right)$

2.1 Basic definitions

2.1.1

proximity switch
a position switch which is operated without mechanical contact with the moving nac

```
[IEV 441-14-51] 1
```


2.1.1.1

inductive proximity switch

a proximity switch producing an electromagnetif within a sensing zone and having a semiconductor switching element

2.1.1.2

capacitive proximity swinot?
a proximity switch producing an electric field within a sensing zone and having a semiconductor switching element

2.1.1.3

ultrasonic proximity switch (see Figure 2)
a proximity switch transmitting and receiving ultrasound waves within a sensing zone and having a semiconductor switching element

2.1.1.4

photoelectric proximity switch (see Figure 1)
a proximity switch which senses objects that either reflect or interrupt visible or invisible light and having a semiconductor switching element

2.1.1.4.1

type D
diffuse reflective photoelectric proximity switch which is directly operated through lateral or axial approach to its reference axis by a defined object

2.1.1.4.2

type R
retroreflective photoelectric proximity switch which is indirectly operated through lateral approach to its reference axis between emitter-receiver and reflector by a defined object

2.1.1.4.3

type T
through beam photoelectric proximity switch which is indirectly operated through lateral approach of its reference axis between emitter and receiver by a defined object

2.1.1.5

non-mechanical magnetic proximity switch
proximity switch which senses the presence of a magnetic field and has a semiconductor switching element and no moving parts in the sensing element

2.1.1.6

direct operated proximity switch
proximity switch which detects its target without the use of an external means, e.g. a reflector

[^1]
2.1.1.7

indirect operated proximity switch proximity switch which detects its target with the use of an external means, egg. a reflector

2.1.1.8

2.1.1.8
neutral density filters
filters which uniformly attenuate the intensity of light over a broad spectral NOTE Attenuation is accomplished by using either a light-absorbing thin-film metal coating that combines absorption and reflection.

2.2 Parts of a proximity switch

2.2.1

semiconductor switching element
an element designed to
Rt p current of an electric circuit by controlling conductivity of a semiconductor

2.2.2
 Reference axis

2.2.2.1

reference axis for inductive, capacitive, non-mechanical magnetic and ultrasonic proximity switches
an axis perpendicular to the sensing face and passing through its centre

2.2.2.2
 reference axis for types R and D photoelectric proximity switches

an axis located midway between the optical axis of the emitter and this of receiver elements or lenses (see Figure 1)

2.2.2.3

reference axis for type T photoelectric proximity switches
an axis perpendicular to the centre of the emitter

2.2.3
 standard target

a specified object used for making comparative measurements of the operating distances and sensing distances

2.2.4

free zone

a volume around the proximity switch which is kept free from any material capable of affecting the characteristics of the proximity switch

2.2.5

damping material
a material which has an influence on the characteristics of a proximity switch

2.2.6

non-damping material
a material which has negligible influence on the characteristics of a proximity switch

2.2.7
 sound-reflecting material

a material which reflects the ultrasound waves and gives detectable echoes

2.2.8

sound-absorbing material

a material with negligible reflecting characteristics for ultrasound waves which gives no detectable echo

2.2.9

embeddable proximity switch

2.2.10

non-embeddable proximity switch
a proximity switch is "non-embeddable" when ${ }^{\mathbf{N}}$. necessary in order to maintain its ch 申

2.2.11

Sensing face

2.2.11.1

sensing face of an inductive proximity switch

a surface of the proximity switch through which the electromagnetic field emerges

2.2.11.2

sensing face of a capacitive proximity switch
a surface of the proximity switch through which the electric field emerges

2.2.11.3

sensing face of an ultrasonic proximity switch
a surface of the proximity switch where ultrasound is transmitted and received

2.2.11.4

sensing face of a non-mechanical magnetic proximity switch
a surface of the proximity switch through which the change in a magnetic field is detected
2.2.12
emitter
the light source, lens and necessary circuitry which provide the light beam

2.2.13

receiver
the detector, lens and necessary circuitry to monitor the presence of the light beam from the emitter

2.2.14

reflector
a specified device used to reflect light back to the receiver for type R photoelectric proximity switches

2.2 .15

Adjuster

2.2.15.1

adjuster of a capacitive proximity switch
a part of capacitive proximity switch used to set the operating distance. Its use compensates for influence due to target material, transmission medium and installation (mounting) conditions

2.2.15.2

adjuster of an ultrasonic or a photoelectric proximity switch a part of an ultrasonic or a photoelectric proximity switch used to set the operating distance within the sensing range

2.3 Operation of a proximity switch

2.3.1
 operating distances (s)

a distance at which the target approaching the sensing ifering the reference axis causes the output signal to change

2.3.1.1

rated operating distance $\left(s_{n}\right)$
the rated operating distang -15 and 10 denventional quantity used to designate the operating distances. It does not takiduncount either manufacturing tolerances or variations due to external conditions such as voltage and temperature

2.3.1.2

sensing range (s_{d})
the range within which the operating distance may be adjusted

2.3.1.2.1
 minimum operating distance

the lower limit of the specified sensing range of an ultrasonic or photoelectric proximity switch

2.3.1.2.2

maximum operating distance
the upper limit of the specified sensing range of an ultrasonic or photoelectric proximity switch

2.3.1.3

blind zone
the zone between the sensing face and the minimum operating distance, where no object can be detected

2.3.1.4

total beam angle
the solid angle around the reference axis of an ultrasonic proximity switch, where the sound level drops by 3 dB

Figure 1b - Type R, emitter-receiver and reflector - Retroreflective photoelectric

Figure 1c - Type D, emitter-receiver and object - Diffuse reflective photoelectric
Figure 1 - Sensing range and operating range of photoelectric proximity switches (see 7.2.1.3 and 8.4)

2.3.1.5

effective operating distance (s_{r})
the operating distance of an individual proximity switch, measured at stated temperature, voltage and mounting conditions

2.3.1.6

usable operating distance (s_{u})
the operating distance of an individual proximity switch, measured under specified conditions

2.3.1.7

assured operating distance (s_{a})
the distance from the sensing face within which the correct operation of the proximity switch under specified conditions is assured

2.3.1.8

operating range (r_{0})
range within which a lateral approach of the target causes the output signal of a through beam or retroreflective proximity switch to change

2.3.2

lateral approach

the approach of the target perpendicular to the reference axis

2.3.3

axial approach
the approach of the target with its centre maintained on the reference axis

2.3.4

repeat accuracy (R)
the value of variation of the effective operating distance $\left(s_{r}\right)$ under specifieg gitions

2.3.5

differential travel (H)
the distance between the operating point when the t@ryapproaches the proximity switch and the release point when the target moves awav

2.4 Switching element charactertistics
 2.4.1

switching element function

2.4.1.1

make function
a make function causes load current to flow when a target is detected and load current not to flow when a target is not detected

2.4.1.2

break function

a break function causes load current not to flow when a target is detected and load current to flow when a target is not detected

2.4.1.3
 make-break, of changeover function

a switching element combination which contains one make function and one break function

2.4.1.4

response time for a proximity switch
the time required for the device switching element to respond after the target enters or exits the sensing zone

2.4.1.5

turn on time for a photoelectric proximity switch
the time required for the switching element to respond after the target enters the sensing range with excess gain of 2 (see 2.4.6)

2.4.1.6

turn off time for a photoelectric proximity switch
the time required for the switching element to respond after the target exits the sensing range with excess gain of 0,5 (see 2.4.6)

2.4.2
 independent (snap) action

a switching element function substantially independent from the velocity of the target

2.4.3

frequency of operating cycles (f)
number of operating cycles performed by a proximity switch during a specified period of time

2.4.4

time delay before availability ($\boldsymbol{t}_{\mathrm{v}}$)
the time delay before availability is the time between the switching on of the supply voltage and
the instant at which the proximity switch becomes ready to operate correctly

2.4 .5

Currents (I)
2.4.5.1
off-state current (I_{r})

2.4.5.2

minimum operational current (I_{m}) the current which is necessary to maintain ON-staje Ordaction of the switching element

2.4.5.3

no-load supply current (I_{0})
the current drawn by a four-terminal proximity switch from its supply when not connected to a load

2.4.6

excess gain for a photoelectric proximity switch
the ratio of the light received by the photoelectric proximity switch to the light required to operate the photoelectric proximity switch

2.4.7

ambient light for a photoelectric proximity switch
for the purpose of this standard, ambient light is the light received by the receiver other than that originating from the emitter

$$
\text { IEC } \quad 888 / 92
$$

Figure 2 - Ultrasonic proximity switch operating distances
Table 1 - Classification of proximity switches

$1^{\text {st }} \mathrm{ps./1}$ digit	$2^{\text {nd }}$ pos./1 digit	$3^{\text {rd }}$ pos./3 digits	$4^{\text {th }}$ pos./1 digit	$5^{\text {th }}$ pos./1 digit	$6^{\text {th }}$ pos./1 digit
SENSING MEANS 3.1	MECHANICAL INSTALLATION 3.2	CONSTRUCTION FORM AND SIZE 3.3	SWITCHING ELEMENT FUNCTION (OUTPUT) 3.4	TYPE OF OUTPUT 3.5	METHOD OF CONNECTION 3.6
I = inductive C = capacitive $U=$ ultrasonic D = diffuse reflective photoelectric $M=$ non-mechanical magnetic $R=$ retroreflective photoelectric $\mathrm{T}=$ through beam photoelectric	1 = embeddable 2 = non-embeddable 3 = either	FORM (1 capital letter) A = cylindrical threaded barrel $B=$ cylindrical smooth barrel C = rectangular with square cross-section D = rectangular with rectangular cross-section DIMENSION (2 numbers) for diameter or side length	$\mathrm{A}=\mathrm{NO}$ (make) B = NF (break) C = changeover (make-break) $\mathrm{P}=$ programmable by user S = other	P = PNP-output 3 or 4 terminal d.c. N = NPN-output terminal d.c. t terminal d.c. 2 $F=$ terminal a.c. $u=\underline{L}$ rinal a.c. 2 d.c. $s=6$ ringr 之	$\begin{gathered} 1=\text { integral leads } \\ 2=\text { plug-in } \\ 3=\text { screw } \\ 9=\text { other } \end{gathered}$
Ultrasonic proximity switch example:					
u Ultrasonic	$\begin{gathered} 3 \\ \text { Either } \end{gathered}$	A30 Cylindrical threaded $\varnothing 30 \mathrm{~mm}$	A NO (make) function	D 2 terminal d.	2 Plug in

3 Classification

Proximity switches shall be classified according to various characteristics as shown in Tabla It is recommended that their dimensions are in accordance with those listed in Annex

3.1 Classification according to sensing means

In this standard the sensing means is designated by a capital lettern

3.2 Classification according to the mechanical instalation

The mechanical installation is designated porngit in the second position.

3.3 Classification accordiget the construction form and size

The construction form and the size are designated by three digits, one capital letter and two numbers. This three-digit designation is placed in the third position.

The capital letter designates the construction form, e.g. cylindrical or rectangular.

The two numbers designate the size, e.g. the diameter of cylindrical types or a length of one side for rectangular types.

3.4 Classification according to switching element function

The switching element function is designated by a capital letter placed in the fourth position.

3.5 Classification according to type of output

The type of output is designated by a capital letter and placed in the fifth position.

3.6 Classification according to method of connection

The method of connection is designated by a one-digit number placed in the sixth position.

4 Characteristics

4.1 Summary of characteristics

The characteristics of a proximity switch shall be stated in the following terms.

- Operating conditions (4.2)
- Rated and limiting values (4.3)

Rated voltages (4.3.1)
Currents (4.3.2)
Rated supply frequency (4.3.3)
Frequency of operating cycles (4.3.4)
Normal load and abnormal load characteristics (4.3.5)
Short-circuit characteristics (4.3.6)

- Utilization categories for the switching element (4.4).

4.1.1 Operation of an inductive or capacitive proximity switch

The output signal is determined by the presence or absence of a designated object in the electromagnetic or electric field which absorbs or alters energy radiated from the sensing faraf

4.1.2 Operation of an ultrasonic proximity switch

The output signal is determined by the presence or absence of a didnad object in the sensing zone which reflects ultrasound energy radiated from the sessface.

4.1.3 Operation of a photoelectric proximity sycth

The output signal is determined by the prada or absence of a designated object that either reflects or interrupts visible or invisible rifl radiated from the emitter.
ric proximity switches have traditionally used the terminology "light-
 in ON state then the device is called "light-operated", and if the presence of light at the receiver causes the output to be in OFF state, then the device is called "dark-operated".

4.1.4 Operation of a magnetic proximity switch

The output signal is determined by the presence or absence of a designated object, which produces a change in a magnetic field within the sensing zone.

4.2 Operating conditions

4.2.1 Operating distance (s) of inductive and capacitive proximity switches

The relationship between the operating distances is shown in Figure 3.

4.2.1.1 Rated operating distance (s_{n})

Rated operating distances are specified in the relevant annexes.

4.2.2 Operating distance (s) of an ultrasonic proximity switch

The relationship between the operating distances is shown in Figure 4.

4.2.2.1 Sensing range (s_{d})

Sensing range values are given in the relevant annexes.

4.2.3 Operating distance(s) of a photoelectric proximity switch

4.2.3.1 Sensing range (s_{d})

For photoelectric proximity switches type D, the operating distances are given as the sensing range $\left(s_{\mathrm{d}}\right)$.

4.2.3.2 Operating range (r_{0})

For photoelectric proximity switches type T and R, the operating distances are given as the operating range $\left(r_{\mathrm{o}}\right)$.

Figure 3 - Relationship between operating distances of inductive and capacitive proximity switches (see 4.2.1, 7.2.1.3 and 8.4.1)

Figure 4 - Relationship between operating distances of ultrasonic proximity switches (see 4.2.2, 7.2.1.3 and 8.4.1)

4.3 Rated and limiting values for the proximity switch and switching element(s)

4.3.1 Voltages

The proximity switch and its switching element(s) are defined by the following rated vo e

4.3.1.1 Rated operational voltage (U_{e})

The rated operational voltage $\left(U_{\mathrm{e}}\right)$ (or range) shall not exceed $250,00 \mathrm{~V}$ d.c.
NOTE The manufacturer may state a range between the limitingnan which include all the tolerances of U_{e}, this range shall be designated U_{B}.

4.3.1.2 Rated insulation voltage (U_{i})

The rated insulation voltage of a proximity switch is the value of voltage to which the dielectric voltage tests and creepage distances are referred.

For proximity switches the highest rated operational voltage shall be considered to be the rated insulation voltage.

4.3.1.3 Rated impulse withstand voltage (U_{imp})

Subclause 4.3.1.3 of IEC 60947-1 applies.

4.3.1.4 Voltage drop $\left(U_{d}\right)$

The voltage drop is the voltage measured across the active output of the proximity switch when carrying the operational current flows under specified conditions. The values are specified in 7.2.1.15.

4.3.2 Currents

The proximity switch and its switching element are defined by the following currents.

4.3.2.1 Rated operational current (I_{e})

See 7.2.1.11.

4.3.2.2 Minimum operational current (I_{m})

See 7.2.1.12.

4.3.2.3 OFF -state current (I_{r})

See 7.2.1.13.

4.3.2.4 No-load supply current (I_{0})

The no-load supply current of a three- or four-terminal proximity switch spain stated by the manufacturer.

4.3.3 Rated supply frequency

The rated supply frequency shall be 50 Hz and

4.3.4 Frequency of operating cyl $y / \mathrm{N}_{\mathrm{f}} \mathrm{N}_{\mathrm{f}}$

The frequency of operating pas shall be in accordance with the relevant annexes or stated by the manufacturer.

4.3.5 Normal load and abnormal load characteristics

4.3.5.1 Rated making and breaking capacities and behaviour of switching element under normal conditions

A switching element shall comply with the requirements given in Table 4.

NOTE For a switching element to which a utilization category is assigned, it is not necessary to specify separately a making and breaking capacity.

4.3.5.2 Making and breaking capacities under abnormal conditions

A switching element shall comply with the requirements given in Table 5.

NOTE For a switching element to which a utilization category is assigned, it is not necessary to specify separately a making and breaking capacity.

4.3.6 Short-circuit characteristics

4.3.6.1 Rated conditional short-circuit current

The rated conditional short-circuit current of a proximity switch is 100 A prospective. The proximity switch shall withstand satisfactorily the test specified in 8.3.4.

4.4 Utilization categories for the switching element

The utilization categories as given in Table 2 are considered standard. Any other type of application shall be based on agreement, between manufacturer and user, but information given in manufacturer's catalogue or tender may constitute such an agreement.

Table 2 - Utilization categories for switching elements

Kind of current	Category	Typical applications
Alternating current	AC-12	Control of resistive loads and solid state loads wit optical isolation
	AC-140	Control of small electromagnetic loas Rollding (closed) current $\leq 0,2 \mathrm{~A}$: e.g. contactor relays
Direct current	DC-12	Control of résintuads and solid state loads with opticalis ratin
	DC-13	phitrof electromagnets
5 Product information		

The following information shall be given by the manufacturer:
a) The manufacturer's name or trade mark.
b) A type designation or other marking which makes it possible to identify the proximity switch and get the relevant information from the manufacturer or his catalogue (see Table 1).
c) Reference to this standard if the manufacturer claims compliance.

Basic rated values and utilization

d) Rated operational voltage(s) (see 4.3.1.1).
e) Utilization category and rated operational currents at the rated operational voltages and rated frequency/frequencies or at direct current, d.c.
f) Rated insulation voltage (see 4.3.1.2).
g) Rated impulse withstand voltage (see 4.3.1.3).
h) IP code (see 7.1.10).
i) Pollution degree (see 6.1.3.2).
j) Type and maximum ratings of short-circuit protective device (see 7.2.5).
k) Rated conditional short-circuit current (see 4.3.6.1).
I) Electromagnetic compatibility (EMC) (see 7.2.6).
m) Operating distances (see 7.2.1.3).
n) Repeat accuracy (see 7.2.1.4).
o) Differential travel (see 7.2.1.5).
p) Frequency of operating cycles (see 7.2.1.6).
r) Minimum operational current (see 7.2.1.12).
s) OFF-state current (see 7.2.1.13).
t) No-load supply current (see 4.3.2.4).
u) Voltage drop (see 7.2.1.15).
v) Switching element function (see 2.4.1).
w) Mounting application, embeddable or non-embeddable (see 2.2.9 and 2.2.10).
x) Physical dimensions (see 7.3).
y) Excess gain (see 7.2.1.10).

5.2 Marking

5.2.1 General

Marking of data under a) and b) of 5.1 is mandatory on the nameplate or marked on then
the proximity switch in order to permit the complete information to be obtaired fedm manufacturer.
Cylindrical proximity switches of 12 mm or smaller body diameter 1 arovide this marking on the cord or on a tag permanently attached to the cord, located 4 un than 100 mm from the body of the device.
Marking shall be indelible and easily legibhand shall not be placed on parts normally removable in service.
Data under c) to y) when p aldided on the proximity switch, shall be included in the manufacturer's literature.

5.2.2 Terminal identification and marking

Subclause 7.1.7.4 applies.

5.2.3 Functional markings

The sensing face shall be marked where this is not apparent by the construction of the proximity switch.

[41] 5.3 Instructions for installation, operation and maintenance

The manufacturer shall specify the conditions for installation, operation and maintenance of the proximity switch.

He shall also specify the recommended extent and frequency of maintenance, if any. ${ }^{A_{1}}$

6 Normal service, mounting and transport conditions

6.1 Normal service conditions

Proximity switches complying with this standard shall be capable of operating under the following standard conditions.

NOTE If the conditions for operation differ from those given in this standard, the user shall state the deviations from the standard conditions and consult the manufacturer on the suitability for use under such conditions.

6.1.1 Ambient air temperature

6.1.1.1 Inductive, capacitive, non-mechanical magnetic and ultrasonic proximity switches

These proximity switches shall operate between the ambient temperatures of $-25^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$. The operating characteristics shall be maintained over the permissible range of ambient temperature.

NOTE For ultrasonic proximity switches, due to the fact that the speed of sound is dependent upon air temperature, the operating distance may change by $0,17 \%$ per kelvin.

6.1.1.2 Photoelectric proximity switch

Photoelectric proximity switches shall operate between the ambient temperatures of $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. The operating characteristics shall be maintained over the permissible rang ambient temperature.

6.1.2 Altitude

Subclause 6.1.2 of IEC 60947-1 applies.

6.1.3 Climatic conditions

6.1.3.1 Humidity

The relative humidity (RH) of tho ir shan not exceed 50% at $70^{\circ} \mathrm{C}$. Higher relative humidities are permitted at lower ten potar, e.g. 90% at $+20^{\circ} \mathrm{C}$.
NOTE Condensation on the sensing face and the change of humidity may influence the operating distances. Care should be taken of condensation which may occur due to variations in temperature. ($50 \% \mathrm{RH}$ at $70^{\circ} \mathrm{C}$ equivalent to $100 \% \mathrm{RH}$ at $54^{\circ} \mathrm{C}$).

6.1.3.2 Pollution degree

Unless otherwise stated by the manufacturer, a proximity switch is intended for installation under environmental conditions of pollution degree 3 as defined in 6.1.3.2 of IEC 60947-1. However, other pollution degrees may apply depending upon the micro-environment.

6.2 Conditions during transport and storage

A special agreement shall be made between the user and the manufacturer if the conditions during transport and storage, e.g. temperature and humidity conditions, differ from those defined in 6.1.

6.3 Mounting

Mounting dimensions and conditions shall be according to the relevant specification sheet of Annex A.

7 Constructional and performance requirements

7.1 Constructional requirements

7.1.1 Materials

Materials shall be suitable for the particular application and shall enable the equipment to comply with the relevant test requirements.

Special attention shall be called to flame and humidity resisting qualities, and to the necessity to protect certain insulating materials against humidity.

NOTE Requirements are under consideration.

7.1.2 Current-carrying parts and their connections

Current-carrying parts shall have the necessary mechanical strength and current-carrying capacity for their intended use.

For electrical connections, no contact pressure shall be transmitted through insulating material other than ceramic or other material with characteristics not less suitable, unless there is sufficient resiliency in the metallic parts to compensate for any possible shrinkage or yielding of the insulation material.

7.1.3 Clearances and creepage distances

Subclause 7.1.4 of IEC 60947-1 applies.

7.1.4 Actuation

Proximity switches are tested for operation by $W_{\text {presence or absence of the standard target, }}^{\text {per }}$, the characteristics of which are specifindhin .2.1.
7.1.5 Vacant

7.1.6 Vacant

7.1.7 Terminals

7.1.7.1 Constructional requirements

Subclause 7.1.8.1 of IEC 60947-1 applies.

7.1.7.2 Connecting capacity

Subclause 7.1.8.2 of IEC 60947-1 applies.

7.1.7.3 Connection means

[友 Subclause 7.1.8.3 of IEC 60947-1 applies with the following additions:
Proximity switches may have integral connecting leads; in this case the outer sheath of the connecting leads should be $2_{0}^{+0,1} \mathrm{~m}$ long unless otherwise agreed between manufacturer and customer. Information provided by the manufacturer may constitute such an agreement.

NOTE National US Electrical Code states that:

1) the free length of a field wiring lead is not less than 152 mm long or 100 mm when intended for installation in an outlet box;
2) a lead that is intended to be spliced in the field to a circuit conductor is not smaller than $0,2 \mathrm{~mm}^{2}$ (24 AWG) and the insulation, when rubber or thermoplastic, is not less than $0,8 \mathrm{~mm}$ thick. A_{1} I

7.1.7.4 Connection identification and marking

Subclause 7.1.8.4 of IEC 60947-1 applies with the following additions.
Proximity switches with integral connecting leads shall have wires identified with colours according to Table 3.

Proximity switches with terminal connections shall be identified according to Table 3.
[4] Table 3 - Connection and wiring identification

Type	Function	Wire	Wire colour	Terminal number ${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	
2 terminals a.c. and 2 terminals d.c. unpolarized	NO (make)			3	
	NC (break)		Yellow, 1	$)_{2}$	
	NO/NC programmable			$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
2 terminals d.c. polarized	NO (make)		Brown Blue	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
	NC (break)	+	Brown Blue	2^{1}	
3 terminals d.c. polarized			Brown Blue Black	$\begin{aligned} & 1 \\ & 3 \\ & 4 \end{aligned}$	
	NC (break)	Output	Brown Blue Black	$\begin{array}{r} 1 \\ 3 \\ 2^{h} \end{array}$	
3 terminals a.c. and 3 terminals a.c./ d.c. polarized	NO (make)		Brown Blue Black	$\begin{aligned} & 1 \\ & 3 \\ & 4 \end{aligned}$	
	NC (break)	L Output	Brown Blue Black	$\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$	
4 terminals d.c. polarized	Change over (make/break)	$+$ - NO output NC output	Brown Blue Black White	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 2 \end{aligned}$	
8 poles M12 connector d.c. polarized 9	NO, NC and other not defined functions	$+$ - NO output NC output Not defined Not defined Not defined GND Screen	Brown Blue Black White Grey Pink Violet Orange ${ }^{e}$ Screen ${ }^{\text {f }}$	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 2 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 8 \end{aligned}$	
12 poles M12 connector d.c. polarized 9	NO, NC and other not defined functions	$+$ NO output NC output Not defined Not defined Not defined GND Screen Not defined Not defined Not defined Not defined	Brown Blue Black White Grey Pink Violet Orange ${ }^{e}$ Screen ${ }^{\text {f }}$ Grey/Pink White/Blue White/Grey Grey/Brown	$\begin{gathered} 1 \\ 3 \\ 4 \\ 4 \\ 2 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	
a It is recommended that both wires are of the same colour. b Terminal numbers (except for a.c. proximity switches, proximity switches using 5 mm and 8 mm connector) shall be the same as integral connector pin numbers.					
c For proximity switches with four or eight terminals d.c. having special functions, terminals 2 or 4 may be used for functions other than outputs. In this case, the manufacturer shall give a clear indication of the wire colour and functionality. d For proximity switches with four terminals d.c., terminals 2 or 4 may be used for output combinations other than those shown in this table. In this case, the manufacturer shall give a clear indication of the function of each terminal. e For connectors without screen connection. f For connectors with screen connection. g Recommended colour coding. The manufacturer shall state the actual wire colours used in the information for use. h For proximity switches with 3 poles M5/M8 connector the NC output is connected to terminal 4.					

The bi-colour of green-and-yellow (green/yellow) shall be used only to identify the protective conductor (IEC 60446). To maintain historic integrity of earth security, the colour green shall not be used for any other purpose than to identify the protective earth conductor.

7.1.8 Vacant

7.1.9 Provisions for protective earthing

7.1.9.1 Constructional requirements

Subclause 7.1.10.1 of IEC 60947-1 applies with the following addition. NOTE 1 For proximity switches having class II insulation, the outside metal bence in required to be connected to the protective earth terminal (see IEC 61140).

NOTE 2 Proximity switches with maximum rated voltages not eqefig either 50 V a.c. or 120 V d.c. need no provision for protective earthing.

Consideration must be given to the safetc Nation of the supply and its transformer (if any) in accordance with the installation rules (SaP EC 60364).
7.1.9.2 Protective eantrininal

Subclause 7.1.10.2 of IEC 60947-1 applies.

7.1.9.3 Protective earth terminal marking and identification

Subclause 7.1.10.3 of IEC 60947-1 applies.

7.1.10 Degree of protection

Proximity switches, when installed in accordance with the manufacturer's instruction shall have minimum IP65 protection, except for photoelectric switches which shall have minimum IP54 protection and shall be verified according to 8.2.

NOTE During the test for the degree of protection the operation of the proximity switch is not required.

7.1.11 Requirements for proximity switches with integrally connected cables

See Annex C.

7.1.12 Class II proximity switches

These devices shall not be provided with means for protective earthing (see IEC 61140).
For class II proximity switches insulated by encapsulation, see Annex B.

7.2 Performance requirements

The following requirements apply to clean new equipment.

7.2.1 Operating conditions

7.2.1.1 General

The equipment shall be mounted in accordance with the instructions given in the relevant specification sheet (Annex A) or by the manufacturer.

For the tests of 7.2.1.3 through 7.2.1.6 the load shall be adjusted to provide $0,2 I_{\mathrm{e}}$.

7.2.1.2 Operating limits

The proximity switch shall operate satisfactorily
a) between 85% and 110% of U_{e}, or
b) between $85 \% U_{e \text { min }}$ and 110% of $U_{e \max }$, or
c) over the range U_{B}.

For d.c., the value of the ripple voltage (peak to peak) shall noracel $0,1 U_{e}$ (see 4.3.1.1).

7.2.1.3 Operating distances

The operating distances are measured pading to 8.4. The operating distances are stated when the target is moving towards the pximity switch in an axial approach.

For inductive and capadtive proximity switches, the relationship between the operating distances is shown in Figure 3.

For ultrasonic proximity switches, the relationship between the operating distances is shown in Figure 4.

For photoelectric proximity switches, the relationship between the operating distances is shown in Figure 1.

7.2.1.3.1 Effective operating distance (s_{r})

The effective operating distance is measured at the rated voltage and at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

- For inductive and capacitive proximity switches it shall be between 90% and 110% of the rated operating distance $\left(s_{n}\right)$:

$$
0,9 s_{\mathrm{n}} \leq s_{\mathrm{r}} \leq 1,1 s_{\mathrm{n}}
$$

- For ultrasonic proximity switches it shall be any distance between the minimum and maximum operating distances:

$$
s_{\min } \leq s_{r} \leq s_{\max }
$$

7.2.1.3.2 Usable operating distance (s_{u})

Usable operating distance is measured over the ambient temperature range and the supply voltage at 85% and 110% of their rated value.

- For inductive and ultrasonic proximity switches, it shall be between 90% and 110% of the effective operating distance $\left(s_{\mathrm{r}}\right)$:

$$
0,9 s_{r} \leq s_{u} \leq 1,1 s_{r}
$$

- For capacitive proximity switches, it shall be between 80% and 120% of the effective operating distance $\left(s_{\mathrm{r}}\right)$:

$$
0,8 s_{\mathrm{r}} \leq s_{\mathrm{u}} \leq 1,2 s_{\mathrm{r}}
$$

7.2.1.3.3 Assured operating distance (s_{a})

- For inductive proximity switches, the assured operating distance is between 0% and 81% of the rated operating distance s_{n} :

$$
0 \leq s_{\mathrm{a}} \leq 0,9 \times 0,9 s_{\mathrm{n}}
$$

- For capacitive proximity switches, the assured operating distance is between 0% and 72% of the rated operating distance s_{n} :

$$
0 \leq s_{\mathrm{a}} \leq 0,9 \times 0,8 s_{\mathrm{n}}
$$

7.2.1.3.4 Operating range $\left(r_{0}\right)$ for photoelectric proximity switches of types Tan Q_{R}

The operating range is measured according to 8.4.
The operating range is shown

- in Figure 11a for type T: emitter and receiver,
- in Figure 11b for type R: emitter-receiver inflector.

The operating range and the value off the excess gain shall be stated by the manufacturer for less than 300 lx and 500 LxPr mbient light according to the test method specified in 8.4.2.
The excess gain is determined according to 8.4.2.1.

7.2.1.3.5 Sensing range $\left(s_{\mathrm{d}}\right)$ for photoelectric proximity switches of type D

The sensing range and/or the operating distance is measured according to 8.4.
The sensing range is shown in Figure 11c for type D: emitter-receiver and object.
The sensing range and the value of the excess gain shall be stated by the manufacturer for less than 300 lx and 5000 lx of ambient light according to the test method specified in 8.4.2.

7.2.1.3.6 Sensitivity and operating distances of non-mechanical magnetic proximity switches

For non-mechanical magnetic proximity switches, the operating sensing characteristics and their tolerances shall be declared by the manufacturer.

7.2.1.4 Repeat accuracy (R)

The repeat accuracy of the effective operating distance $\left(s_{\mathrm{r}}\right)$ is measured over an eight hour period at an ambient temperature of between $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ at a relative humidity of any value in the range of $6 \cdot 1.3 .1$ to a tolerance of $\pm 5 \%$ and with a specified supply voltage.

The difference between any two measurements shall not exceed 10% of the effective operating distance (s_{r}):

$$
R \leq 0,1 s_{r}
$$

7.2.1.5 Differential travel (H)

The differential travel is given as a percentage of the effective operating distance (s_{r}). The measurement is made in accordance with 8.4.1.3 at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and at the rated supply voltage. It shall be less than 20% of the effective operating distance $\left(s_{r}\right)$:

$$
H \leq 0,2 s_{r}
$$

7.2.1.6 Frequency of operating cycles (f)

7.2.1.6.1 Inductive, capacitive and ultrasonic proximity switches

The frequency of operating cycles shall be in accordance with the relevant annexes be measured according to 8.5.1 and 8.5.2.

7.2.1.6.2 Photoelectric proximity switch

The frequency of operating cycles (f) is determined from therpula
where
$t_{\text {on }}$ is the turn on time;
$t_{\text {off }}$ is the turn off time;
and shall be stated by the manufacturer;
$t_{\text {on }}$ and $t_{\text {off }}$ shall be measured according to 8.5.3.

7.2.1.7 Time delay before availability $\left(t_{v}\right)$ (Start-up time)

The time delay before availability shall not exceed 300 ms .
During this time the switching element shall not give any false signal. A false signal is a signal other than zero which appears for longer than 2 ms (see 8.3.3.2.1).

NOTE Zero signal means that only OFF-state current flows through the load.

7.2.1.8 Turn on time ($t_{\text {on }}$)

The turn on time and the measuring method shall be stated by the manufacturer.

7.2.1.9 Turn off time ($t_{\text {off }}$)

The turn off time and the measuring method shall be stated by the manufacturer.

7.2.1.10 Excess gain, photoelectric proximity switch

The excess gain and the measuring method shall be stated by the manufacturer.

7.2.1.11 Rated operational current (I_{e})

The rated operational current shall be:
50 mA d.c. or
200 mA a.c. r.m.s.
Greater values may be agreed upon between manufacturer and user.

7.2.1.12 Minimum operational current (I_{m})

The minimum operational current shall be:
2 terminals $\quad I_{\mathrm{m}} \leq 5 \mathrm{~mA}$ d.c. or a.c. r.m.s.
3 or 4 terminals $\quad I_{\mathrm{m}} \leq 1 \mathrm{~mA}$ d.c.
and verified according to 8.3.3.2.2.

7.2.1.13 OFF-state current (I_{r})

The maximum current $\left(I_{\mathrm{r}}\right)$ which flows through the load circuit of a proximity switch in the OFFstate shall be:

2 terminals $\quad I_{r} \leq 1,5 \mathrm{~mA}$ d.c. or

$$
I_{\mathrm{r}} \leq 3 \mathrm{~mA} \text { a.c. r.m.s. }
$$

3 or 4 terminals $\quad I_{r} \leq 0,5 \mathrm{~mA}$ d.c. and verified according to 8.3.3.2.3.

7.2.1.14 Switching element operation

The switching element operation shalNaNdependent action and shall be verified according to 8.3.3.2.4.

7.2.1.15

Voltage drop
The voltage drop measured according to 8.3 .3 .2 .5 shall be:

2 terminals

$$
\begin{aligned}
& U_{d} \leq 8 \mathrm{~V} \text { d.c. or } \\
& U_{d} \leq 10 \mathrm{~V} \text { a.c. r.m.s. }
\end{aligned}
$$

$$
3 \text { or } 4 \text { terminals } \quad U_{d} \leq 3,5 \mathrm{~V} \text { d.c. }
$$

7.2.2 Temperature rise

Subclause 7.2.2 of IEC 60947-1 applies with the following additions.

The temperature rise limit for proximity switches is 50 K . This temperature rise applies for the exterior of enclosure, metallic or non-metallic materials, and for terminals.

7.2.3 Dielectric properties

The proximity switch shall be capable of withstanding the dielectric tests specified in 8.3.3.4.
For class II proximity switches insulated by encapsulation, see Annex B.

7.2.3.1 Impulse voltage withstand

The minimum test voltage shall be 1 kV .

The characteristics of the impulse generator are: 1,2/50 μ s impulse; source impedance: 500Ω; source energy: 0,5 J.

NOT For proximity devices with sizes below M12 it is permissible for the manufacturer to specify external protection components to achieve this requirement.

7.2.4 Ability to make and break under normal load and abnormal load conditions

7.2.4.1 Making and breaking capacities

a) Making and breaking capacities under normal conditions

The switching elements shall be capable of making and breaking currents without failure under the conditions stated in Table 4, for the relevant utilization categories and the number of operations indicated, under the conditions specified in 8.3.3.5.
b) Making and breaking capacities under abnormal conditions

The switching elements shall be capable of making and breaking currents without failure under the conditions stated in Table 5, for the relevant utilization categories and the number of operations under the conditions specified in 8.3.3.5.

Table 4 - Verification of making and breaking capacities of switchiagerénts under normal conditions corresponding to the utilizatiopdaticgries a

Utilization category	Normal conditianspré								
	Make ${ }^{\text {b }}$						Number and rate of operations for make and break		
	$1 / \mathrm{e}$				$U / u_{\text {e }}$	$\begin{gathered} \operatorname{Cos} \varphi \\ \text { or } \\ T_{0,95} \end{gathered}$	Number of operations c	Operations per minute	ON-time ms
AC-12	1	1	0,9	1	1	0,9	6050	6	50
AC-140	6	1	0,3	1	1	0,3	6050	6	20
DC-12	1	1	1 ms	1	1	1 ms	6050	6	1
DC-13	1	1	$6 P_{\text {ms }}{ }^{\text {d }}$	1	1	$6 P_{\mathrm{ms}}{ }^{\text {d }}$	6050	6	$T_{0,95}$
```\(I_{\mathrm{e}} \quad=\) rated operational current \(U_{\mathrm{e}}=\) rated operational voltage I = current to be made or broken \(U \quad=\) voltage before make \(P \quad=U_{\mathrm{e}} I_{\mathrm{e}}=\) steady-state power consumption \(T_{0,95}=\) time to reach \(95 \%\) of the steady-state current, in milliseconds```									
a See 8.3.3.5									
b For tolerances on test quantities, see 8.3.2.2									
c The first 50 operations shall be run at $U / U_{\mathrm{e}}=1,1$ with the loads set at $U_{\mathrm{e}}$									
The value " $6 \times P$ " results from an empirical relationship which is found to represent most d.c. magnetic loads up to and upper limit of $P=50 \mathrm{~W}$.									

Table 5 - Verification of making and breaking capacities of switching elements under abnormal conditions corresponding to the utilization categories a


### 7.2.5 Conditional short-circuit current

The switching element shall withstand the stresses resulting from short-circuit currents under conditions specified in 8.3.4.

### 7.2.6 Electromagnetic compatibility (EMC)

### 7.2.6.1 General

The operating characteristics of the proximity switch shall be maintained at all levels of electromagnetic interferences (EMI) up to and including the maximum level stated by the manufacturer.

Due to the small physical size of proximity switches and their protected application environment, the immunity levels specified in this standard deviate, in some cases, from those specified in generic immunity standards.

The proximity device to be tested shall have all the essential design details of the type which it represents and shall be in a clean and new condition.

The EMC tests shall be made at $U_{\mathrm{e}}$ or $U_{\mathrm{e} \text { max }}$ if the rated operational voltage is given as a range.

Maintenance or replacement of parts during or after a testing cycle is not permitted.
Generally two environments $A$ and $B$, as follows, are defined in EMC emission standards. The products covered by this standard are intended for use in environment $A$.

Environment A relates to low-voltage non-public or industrial networks/locations/installations including highly disturbing sources.

NOTE 1 Environment A corresponds to equipment class A in CISPR 11.
Environment B relates to low-voltage public networks such as domestic, commercial and light industrial locations/installations. Highly disturbing sources such as arc welders are not covered by this environment.

NOTE 2 Environment B corresponds to equipment class B in CISPR 11.

### 7.2.6.2 Immunity

### 7.2.6.2.1 Acceptance criteria

Table 7 gives acceptance criteria.

Item	Acceptance criteria (performance criteria during tests)		
	A	B	C
Overall performance	No noticeable changes of the operating characteristic.   Operating as intended ${ }^{\text {a }}$	During the tests, the state of the switching element shall not change for more than 1 ms for d.c. devices and one half cycle of supply frequency for a.c. devices $A_{1}$ b $A_{1}$	Temporary degradation or loss of performance which requires operator intervention or system reset
Operation of displays and signalling components	No changes to visible display information.   Only slight light intensity fluctuation of LEDs, or slight movement of characters	Temporary visible changes or loss of information.   Undesired LED illumination	Shut down, permanent loss of display or wrong information.   Unpermitted operating mode.   Not self-recoverable
Information processing and sensing functions	Undisturbed communication and data interchange to external devices remains within the specification	Temporarily disturbed communication, which is detected and is selfrecoverable	Erroneous processing of information.   Undetected loss of data and/or information.   Errors in communication.   Not self-recoverable

a The manufacturer shall state in his literature the operating frequency and bandwidth where conducted radio frequencies may cause malfunction.
$\mathrm{A}_{1} \boldsymbol{\gamma}^{\text {b }} \quad$ For a.c. devices with power consumption of more than 750 mW , the recovery time of the switching element may be longer than one half cycle but shall be less than the specified maximum startup-time $t_{\mathrm{v}}$ (time delay before ability) according to 7.2.1.7. The maximum recovery time shall be stated by the manufacturer in his literature. A $A_{1}$

### 7.2.6.2.2 Electrostatic discharges

In accordance with IEC 61000-4-2 and Table 8.
The test voltage shall be applied using the contact discharge method to proximity devices with metallic enclosures.

The test voltage shall be applied using the air discharge method to proximity devices with non metallic enclosures.

Table 8 - Immunity tests

Type of test	Test level required		Acceptan
Electrostatic discharge immunity test IEC 61000-4-2	$8 \mathrm{kV} /$ air discharge or $4 \mathrm{kV} /$ contact discharge		C.
Radiated radio-frequency electromagnetic field immunity test   ( 80 MHz to 1 GHz and $1,4 \mathrm{GHz}$ to 2 GHz )   IEC 61000-4-3	$3 \mathrm{~V} / \mathrm{m}^{\mathrm{f}}$		A
Electrical fast transient/burst immunity test IEC 61000-4-4	$2 \mathrm{kV} / 5 \mathrm{kHz}$ ush the capacitive coupling clampN:		B
Conducted disturbances induced by radiofrequency fields immunity test ( 150 kHz to 80 MHz ) IEC 61000-4-6	T		A
Power frequency magnetic field immunity test ${ }^{\text {a }}$   IEC 61000-4-8	$30 \mathrm{~A} / \mathrm{m}$		A
Voltage dips immunity test 9 IEC 61000-4-11	$\begin{aligned} & \text { Class 2 }{ }^{\text {b, c }} \\ & 0 \% \text { during } \\ & 0,5 \text { cycle } \end{aligned}$	$\text { Class } 3^{b, c}$   0 \% during 0,5 cycle	B
	Class 2 b, c, d   0 \% during 1 cycle   70 \% during   $25 / 30$ cycles	Class 3 b, c, d   0 \% during 1 cycle   40 \% during   10/12 cycles   70 \% during   $25 / 30$ cycles   80 \% during   250/300 cycles	C
Voltage interruptions immunity test ${ }^{9}$ IEC 61000-4-11	Class $2^{\text {b, c, }} \mathrm{d}$   0 \% during 250/300 cycles	Class $3^{b, c, d}$   0 \% during 250/300 cycles	C
Immunity to harmonics in the supply IEC 61000-4-13	No requirements ${ }^{\text {e }}$		
a Applicable only to proximity switches containing devices susceptible to power frequency magnetic fields.   b Class 2 applies to points of common coupling and in-plant points of common coupling in the industrial environment in general.   Class 3 applies to in-plant couplings in industrial environment only. This class should be considered when a major part of the load is fed through converters; welding machines are present; large motors are frequently started or loads vary rapidly.   The manufacturer shall state the applicable class.   c The given percentage means percentage of the rated operational voltage, e.g. $0 \%$ means 0 V .   d The value before the solidus (/) is for 50 Hz and the value after is for 60 Hz tests.   e Test levels are under study for the future.   f The level differs from IEC 60947-1 because the installation environment for proximity switches is primarily in automation machinery and experience of many years shows that the disturbance levels are so low that the immunity requirements in this standard are sufficient.   g Applicable for a.c. switches only.			

### 7.2.6.2.3 Radiated radio-frequency electromagnetic fields

In accordance with IEC 61000-4-3 and Table 8.
If the worst case direction is known, then the test need only be performed in that dion. Otherwise, the electromagnetic field shall be faced to the device under test ipo mutually perpendicular directions.

### 7.2.6.2.4 Electrical fast transients/bursts

In accordance with IEC 61000-4-4 and Table 8.

### 7.2.6.2.5 Surges

For proximity devices it is nat $C$ salary to test for surge immunity. The operating environment of these devices is consider $d$ be well protected against surge voltages caused by lightning strikes.

### 7.2.6.2.6 Conducted disturbances induced by radio-frequency fields

In accordance with IEC 61000-4-6 and Table 8.

### 7.2.6.2.7 Power-frequency magnetic fields

In accordance with IEC 61000-4-8 and Table 8.

NOTE See Annex E for strong magnetic fields.

### 7.2.6.2.8 Voltage dips and interruptions

In accordance with IEC 61000-4-11 and Table 8.

### 7.2.6.2.9 Harmonics in the supply

In accordance with IEC 61000-4-13 and Table 8.

### 7.2.6.3 Emission

### 7.2.6.3.1 Conditions during measurement

The measurement shall be made in the operating mode, including grounding conditions, producing the highest emission in the frequency range being investigated which is consistent with normal applications (see Clause 4).

Each measurement shall be performed in defined and reproducible conditions.

Descriptions of the tests, test methods and setups are given in CISPR 11. The contents of this standard is not reproduced here, however modifications or additional information needed for the practical application of the tests are given in this standard.

Proximity devices which are intended to be powered by public mains supply, therefore within the scope of IEC 61000-3-2 and IEC 61000-3-3, regarding low-frequency emission shall also comply with the requirements of these standards.

### 7.2.6.3.2 Limits for high-frequency emissions

Proximity devices can generate continuous electromagnetic disturbances.

Such emissions shall not exceed the limits given in CISPR 11 for environment A. These tests
are only required when the control and/or auxiliary circuits contain components with fundamental switching frequencies greater than 9 kHz .

### 7.2.6.3.3 Limits for low-frequency emissions

For proximity devices which generate low frequency harmonics, the regarents of IEC 61000-3-2 apply.
For proximity devices which generate low-frequency voltage fluctas, the requirements of IEC 61000-3-3 apply.

NOTE These requirements are not required for devices tho will be connected to public mains.

### 7.3 Physical dimensions

Proximity switches with statide
specification sheet (Annex physical dimensions are given in the relevant

NOTE Proximity switches with other dimensions are also covered by this standard.

### 7.4 Shock and vibration

### 7.4.1 Shock

In accordance with IEC 60068-2-27 with the following conditions:

Six shocks applied in each direction along three mutually perpendicular axes (six separate tests):

Pulse shape: half-sine
Peak acceleration: $\quad 30 g_{\mathrm{n}}$
Duration of the pulse: 11 ms

### 7.4.2 Vibration

In accordance with IEC 60068-2-6 with the following conditions, along three mutually perpendicular axes:

Frequency range:
Amplitude:

Sweep cycle duration:
Duration of endurance at resonant frequency or at 55 Hz :

10 Hz to 55 Hz
1 mm for inductive, capacitive, non-mechanical magnetic and ultrasonic proximity switches
$0,5 \mathrm{~mm}$ for photoelectric proximity switches
5 min

30 min in each of the three axes ( 90 min in all).

### 7.4.3 Results to be obtained

After the test, the operating characteristics shall remain as given in Clause 4.

## 8 Tests

Unless otherwise stated the tests shall be carried out at an ambient air temperature of

```
(23 土5) *}\mp@subsup{}{}{\circ}\textrm{C}
```


### 8.1 Kinds of tests

### 8.1.1 General

Subclause 8.1.1 of IEC 60947-1 applies.

### 8.1.2 Type tests

Type tests are intended to verify compliance with this sandard.
This comprises the verification of:
a) Temperature rise (8.3.3.3)
b) Dielectric properties
c) Making and breaking capacities of switching elements under abnormal and normal conditions (8.3.3.5).
d) Performance under conditional short-circuit current (8.3.4).
e) Constructional requirements (8.2).
f) Degree of protection (8.2).
g) Operating distances (8.4).
h) Operating frequency (8.5).
i) Electromagnetic compatibility (8.6).
j) Shock withstandability (7.4.1).
k) Vibration withstandability (7.4.2).

### 8.1.3 Routine tests

Routine tests are the responsibility of the manufacturer and are usually limited to the mechanical inspection and verification of electrical operation.

The inspection may be supplemented by a dielectric test. When performed, the dielectric test is carried out according to 8.3.3.4, the test duration may be reduced to 1 s .

### 8.1.4 Sampling tests

Subclause 8.1.4 of IEC 60947-1 applies.

### 8.1.5 Special tests

These tests are subject to agreement between manufacturer and user.

### 8.2 Compliance with constructional requirements

Subclause 8.2 of IEC 60947-1 applies where applicable.

### 8.3 Performances

### 8.3.1 Test sequences

The type and sequence of tests to be performed on five representative samples are as follows:
Sample No. 1
Test No. 1 - temperature rise (8.3.3.3).

Test No. 2 - mechanical properties of terminals (8.2.4 of IEC 60947-1).
Test No. 3 - dielectric properties (8.3.3.4).
Test No. 4 - visual inspection.
Sample No. 2
Test No. 1 - degree of protection (Annex C of IEC 60947-1).
Test No. 2 - vibration (7.4.2).
Test No. 3 - frequency of operating cycles (8.5).
Test No. 4 - operating distances (8.4).
Test No. 5 - dielectric properties (8.3.3.4).
Sample No. 3
Test No. 1 - degree of protection (frntex C of IEC 60947-1).
Test No. 2 - shock ( $7 \times+1 \sim$.
Test No. 3 - frequency bf operating cycles (8.5).
Test No. 4 - operating distances (8.4).
Test No. 5 - dielectric properties (8.3.3.4).
Sample No. 4
Test No. 1 - making and breaking capacities (8.3.3.5).
Test No. 2 - dielectric properties (8.3.3.4).
Test No. 3 - operating distances (8.4).
Sample No. 5
Test No. 1 - electromagnetic compatibility (8.6).
Test No. 2 - performance under short-circuit conditions (8.3.4).
Test No. 3 - dielectric properties (8.3.3.4).
Test No. 4 - operating distances (8.4).
There shall be no failure of any of the above tests.

NOTE 1 More than one test sequence or all test sequences may be conducted on one sample at the request of the manufacturer. However, the test shall be conducted in the sequence given above for each sample.

NOTE 2 For class II proximity switches insulated by encapsulation, additional samples are required (see Annex B). For proximity switches with integrally connected cables, additional samples are required (see Annex C).

### 8.3.2 General test conditions

### 8.3.2.1 General requirements

Subclause 8.3.2.1 of IEC 60947-1 applies unless otherwise specified with the following addition.

### 8.3.2.1.1 Standard target for inductive and capacitive proximity switches

The target is square shape having a thickness of 1 mm and made of carbon steel e.g. type Fe 360 as defined in ISO 630 and it shall be of the rolled finish.

The length (a) of the side of the square is equal to

- the diameter of the circle inscribed on the active surface of the sensing face, or
- three times the rated operating distance $s_{\mathrm{n}}$ whichever is greater (Figure 5).

For a capacitive proximity switch, the target shall be connected to earth.


Figure 5 - Method of measuring the operating distance (8.3.2.1 and 8.4.1)

### 8.3.2.1.2 Standard target for ultrasonic proximity switch

The target is square shape, having the thickness of 1 mm and made from metal with rolled finish. For dimensions see relevant specification sheets in Annex A.

### 8.3.2.1.3 Standard target for photoelectric proximity switch

a) Type R

For the purpose of this test, the standard target is the reflector which is either supplied or specified by the manufacturer.
b) Type T

For the purpose of this test, the standard target is the emitter which is either supplied or specified by the manufacturer.
c) Type D
$200 \mathrm{~mm} \times 200 \mathrm{~mm}$ white paper with $90 \%$ reflectivity.
NOTE The standardized target is chosen in accordance with the more general applications. For special products or applications, some additional information may be given.

### 8.3.2.1.4 Standard target for non-mechanical magnetic proximity switch

For non-mechanical magnetic proximity switches the target shall be specified by the manufacturer.

### 8.3.2.2 Test quantities

Subclause 8.3.2.2 of IEC 60947-1 applies except for 8.3.2.2.3.

### 8.3.2.3 Evaluation of test result

The condition of the proximity switch after each test shall be checked by the verification applicable to each test.

The proximity switch is deemed to have met the requirements of this standard if it meets the requirements of each test and/or test sequence as applicable.

### 8.3.2.4 Test reports

Subclause 8.3.2.4 of IEC 60947-1 applies.
8.3.3 Performance under no load, normal load and abnormal load condition

### 8.3.3.1 Operation

Subclause 8.3.3.1 of IEC 60947-1 applies.

### 8.3.3.2 Operating limits

Operational voltages are defined under 7.2.1

### 8.3.3.2.1 Time delay beforerovalilability

The test is performed withoximity switch connected to a test circuit shown in Figure 6. The target is placed in a position such that the switching element is in the ON-state. With rated operational voltage $U_{\mathrm{e}}$, or with the minimum value of the rated operational voltage when it is given as a range, the load is adjusted to obtain the minimum operational current $I_{\mathrm{m}}$.

The time delay before availability and the duration of any false signal are measured by recording the signal across the load with an oscilloscope as the bounce-free "Switch" is closed. Figure 7 shows typical oscillograms for a d.c. switching element. Figure 7 a shows the oscillogram when the switching element is in ON-state and Figure 7b shows the oscillogram when the switching element is in OFF-state.

For inductive and capacitive proximity switches the target shall be positioned at either $1 / 3 s_{\mathrm{n}}$ or $3 s_{n}$.

The measured time delay before availability, the time between $t_{3}$ and $t_{0}$ in Figure 7 shall be according to 7.2.1.7. The duration of the false signal, if any, the time between $t_{2}$ and $t_{1}$ on Figures 7 a and 7 b , shall be according to 7.2.1.7.


Figure 6 - Test circuit for the verification of time delay before availability (see 7.2.1.7 and 8.3.3.2.1)


Figure 7b - Switching element is in OFF-state

$$
\begin{aligned}
& t_{0}=\text { supply is switched on } \\
& t_{1}=\text { beginning of false signal (if any) } \\
& t_{2}=\text { end of false signal (if any) } \\
& t_{3}=\text { end of time delay } \\
& t_{4}=\text { maximum time for delay }(300 \mathrm{~ms})
\end{aligned}
$$

NOTE 1 The false signal (if any) may begin at $t_{0}$, which means that $t_{0}$ and $t_{1}$ are the same time marks.
NOTE 2 In case of no false signal, the time mark $t_{3}$ can have any position between $t_{0}$ and $t_{4}$.
NOTE 3 The waveform of the false signal (if any) is not defined.
Figure 7 - Signal output across load in Figure 6 (see 8.3.3.2.1)

### 8.3.3.2.2 Minimum operational current $\left(I_{\mathrm{m}}\right)$

The test is performed with the proximity switch connected to a test circuit shown in Figure 8.


Figure 8 - Test circuit for the verification of minimum operational current OFF-state current, voltage drop and independent snap action (see 8.3.3.2.2, 8.3.3.2.3, 8.3.3.2.4 and 8.3.3.2.5)

The target is placed in a position such that the switching element is in the ON-state.
With supply voltage $U_{\mathrm{e}}$ and the switch S being open, the load $R_{1}$ is adjusted to obtain the current $I_{\mathrm{m}}$. The measured value shall not exceed the value specified in 7.2.1.12.

The switching element shall not change state during the test.

### 8.3.3.2.3 OFF-state current ( $I_{r}$ )

With the circuit in Figure 8 and the switch $S$ closed, the load $R_{2}$ is adjusted to obtain the rated operational current $I_{e}$ when the supply voltage is the highest $U_{e}$. The target is then moved in a position such that the switching element is in the OFF-state.

The $\left(I_{r}\right)$ current shall be measured with supply voltage $U_{e}+10 \%$ or with the maximum value of the supply voltage $U_{\mathrm{B}}$ where it is specified as a range. The $\left(I_{\mathrm{r}}\right)$ current shall not exceed the value specified in 7.2.1.13.

### 8.3.3.2.4 Independent (snap) action

Independent (snap) action shall be checked at maximum and minimum operating load currents at both maximum and minimum rated operating voltages. Resistive loads of appropriate value shall be used for each of the four tests.

These tests shall be carried out by moving the target from a position where the switching element is in the OFF-state to a position where the switching element is in the ON-state and observing the output on an oscilloscope. The switching element function shall be substantially independent from the velocity of the target and the output shall switch between the ON and the OFF states without oscillating, or holding at any intermediate level.

### 8.3.3.2.5 Voltage drop $\left(U_{d}\right)$

The voltage drop is measured across the active outputs of the proximity switch when the switching element is in the ON-state and carrying the rated operational current ( $I_{\mathrm{e}}$ ) at $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$ ambient temperature and at the lowest rated frequency. This measurement is performed with the circuit in Figure 8 and the switch $S$ closed. The load $R_{2}$ is adjusted to
obtain the rated operational current $\left(I_{\mathrm{e}}\right)$ with the supply voltage $U_{\mathrm{e}}$. The voltage drop $U_{d}$ is measured:

- at $U_{e}+10 \%$ and $U_{e}-15 \%$,
- or $U_{\mathrm{e} \max }+10 \%$ and $U_{\mathrm{e} \min }-15 \%$,
- or $U_{\mathrm{B} \text { max }}$ and $U_{\mathrm{B} \text { min }}$

The measured voltage drop shall not exceed the values specified in

### 8.3.3.3 Temperature rise

The proximity switch, installed in free air, is shed ${ }_{\rho}$ ith its rated operational voltage $\left(U_{\mathrm{e}}\right)$ (or
 its rated operational current $\left(I_{e}\right)$ until $\mid \mathrm{tt} A N \mathbf{N a}$ al equilibrium is reached.

The temperature rise, meatacal on the terminals when applicable, and on any point of the enclosure shall not exceed 50 K (see 7.2.2).

The length of conductor connected to each terminal shall be $2_{0}^{+0,1} \mathrm{~m}$.

### 8.3.3.4 Dielectric properties

The test for verifying dielectric properties shall be made:

- in accordance with 8.3.3.4 of IEC 60947 -1 for the rated impulse withstand voltage $U_{\text {imp }}$ (see 4.3.1.3), and
- in accordance with 8.3.3.4.1 and 8.3.3.4.2 and 8.3.3.4.3 of this standard.

For class II proximity switches insulated by encapsulation, see Annex B.

### 8.3.3.4.1 Application of the test voltage

This test is to be carried out under circumstances approaching actual service conditions e.g. with conductors attached. The external surface of all insulating parts likely to be touched in service shall be made conducting by being closely covered by a metal foil.

The proximity switch shall be capable of withstanding the test voltage applied for 1 min for a type test, and 1 s for routine test with the following conditions:

- between live parts of the switching element and parts of the proximity switch intended to be earthed;
- between live parts of the switching element and surfaces of the proximity switch likely to be touched in service, conducting or made conducting by metal foil;
- between live parts belonging to electrically separated switching elements, if any.


### 8.3.3.4.2 Value of the test voltage

A sinusoidal voltage of power frequency is applied according to 8.3.3.4.1.
The test voltages are given in Table 6.

Table 6 - Test voltages

Rated insulation voltage		Dielectric test voltage
DC	AC	AC
V	V	$(\mathrm{V}$ (r.m.)
75	50	500
150	125	
300	250	

### 8.3.3.4.3 Results to be obtainepl <br> There shall be no unintentiant

NOTE 1 Exception is an intentional disruptive discharge designed for the purpose, e.g. transient overvoltage suppressing means.

NOTE 2 The term "disruptive discharge" relates to a phenomenon associated with the failure of insulation under electrical stress, in which the discharge completely bridges the insulation under test, reducing the voltage between the electrodes to zero or nearly to zero.

NOTE 3 The term "sparkover" is used when a disruptive discharge occurs in a gaseous or liquid dielectric.

NOTE 4 The term "flashover" is used when a disruptive discharge occurs over the surface of a dielectric in a gaseous or liquid medium.

NOTE 5 The term "puncture" is used when a disruptive discharge occurs through a solid dielectric.

NOTE 6 A disruptive discharge in a solid dielectric produces permanent loss of dielectric strength; in a liquid or gaseous dielectric, the loss may be only temporary.

### 8.3.3.4.4 Impulse voltage withstand test

The test is performed according to 7.2.3 of IEC 60947-1 and 7.2.3.1 of this standard with the following additional requirement:

- the proximity device is not powered during the test;
- the impulse test shall be applied:
a) between all terminals connected together and earth;
b) between terminals intended to be connected to the power supply;
c) between each output terminal and each terminal intended to be connected to the power supply.
- three positive and three negative pulses shall be applied between each two points at intervals of not less than 5 s .

NOTE The impulse voltage withstand test is designed as a type test.

### 8.3.3.5 Making and breaking capacities

Tests for verification of making and breaking capacities shall be made according to the general test requirements stated in 8.3.2.1.

### 8.3.3.5.1 Test circuits

The load impedance shall be placed on the load side of the device as shown in Figure 9. The circuit voltage with the test current flowing shall not be less than $U_{\mathrm{e}}$.


Figure 9 - Test circuit for the verification of making and breaking capability (see 8.3.3.5)

### 8.3.3.5.2 Making and breaking capacities under normal conditions

The load circuitry shall be adjusted to give the values shown in Table 4.

### 8.3.3.5.3 Making and breaking capacities under abnormal conditions

The load circuitry shall be adjusted to give the values shown in Table 5.

### 8.3.3.5.4 Results to be obtained

After the test, the effective operating distance of the proximity switch shall be measured and remain within the limits given in 7.2.1.3.1.

### 8.3.4 Performance under short-circuit current conditions

### 8.3.4.1 Test circuit and test procedure

The proximity switch "PS" in new condition shall be mounted as in service, in free air, and connected to the test circuit with the same size wire as used in service, see Figure 10.

The short-circuit protective device "SCPD" shall be of the type and rating stated by the manufacturer. This "SCPD" shall be omitted if the proximity switch is integrally protected against short circuits.

The target is placed in a position such that the switching element is in the ON-state, $R_{1}$ is selected so that the current flowing through the proximity switch is equal to its rated operational current. The supply S shall be adjusted to 100 A prospective short-circuit current. The "SC" switch, parallel with $R_{1}$ load, is intended to cause the short circuit. The open circuit voltage shall be 1,1 times the rated operational voltage or the maximum value of the voltage range.

The test shall be performed three times by randomly closing the "SC" switch. The test current is maintained until the SCPD or the internal short-circuit protection in the proximity switch has operated. The interval between each of the three tests shall be not less than 3 min . The actual time between tests shall be stated in the test report. After each test, the "SCPD" shall be replaced or reset.


Figure 10 - Short-circuit testing (see 8.3.4.2)

### 8.3.4.2 Results to be obtained

After the test, the operating distance of the proximity switch shall be measured and remain


### 8.4 Testing of operating distances

### 8.4.1 Inductive, capacitive, non-mechanical magnetic and ultrasonic proximity switches

### 8.4.1.1 Test conditions

A proximity switch in new condition is mounted according to the relevant annex and the target is moved, not faster than $1 \mathrm{~mm} / \mathrm{s}$, towards and away from the sensing face of the proximity switch in an axial direction. The operating distances are measured as shown in Figures 3 and 4 .

### 8.4.1.2 Effective operating distance ( $s_{\mathrm{r}}$ )

The effective operating distance is measured at the rated voltage or at any voltage within the voltage range and at $23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient air temperature. The measured value shall be within the limits given in 7.2.1.3.1.

### 8.4.1.3 Differential travel (H)

The differential travel is defined as a percentage of the effective operating distance $\left(s_{\mathrm{r}}\right)$. The measurement is made at the ambient temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ at rated supply voltage. The target shall be moved towards the proximity switch within the $\left(s_{\mathrm{r}}\right)$ range and then be moved away from the proximity switch. The measured value shall be according to 7.2.1.5.

### 8.4.1.4 Usable operating distance ( $s_{u}$ )

Usable operating distance is measured over the $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ambient temperature range with the supply voltage at $85 \%$ and $110 \%$ of its rated value. The target shall be moved towards the proximity switch. The measured value shall be within the limits given in 7.2.1.3.2.

### 8.4.1.5 Repeat accuracy ( $R$ )

The repeat accuracy of the effective operating distance $\left(s_{r}\right)$ is measured over an 8 h period with an enclosure temperature within $23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$ and with supply voltage $U_{e} \pm 5 \%$ or at ara voltage $\pm 5 \%$ within the rated operational voltage range. The target shall be moved tow proximity switch. The measured value shall be within the limits given in 7.2.1.4.

### 8.4.2 Photoelectric proximity switches

### 8.4.2.1 Determination of the excess gain values

## - Type D

The standard target is positioned at theNtated sensing distance. The reduction of luminance which is necessary to deaconate the proximity switch is determined with neutral density filters. The excess gain is the calculated.

- Types R and T

The emitter or the reflector is positioned at the stated operating range. The reduction of luminance which is necessary to activate the proximity switch is determined with neutral density filters. The excess gain is then calculated.

EXAMPLE To determine the distance at which an excess gain of 2 is achieved, a $50 \%$ neutral density filter may be used for type T, and a 70 \% neutral density filter may be used for types R and D . The filter should be as close as possible to the sensing face.

The neutral density filter measurement technique is the preferred method. Other techniques leading to similar results may be used and shall then be stated by the manufacturer.

NOTE Care needs to be taken to avoid erroneous results due to reflections from the filter.

### 8.4.2.2 Testing of the operating / sensing range and/or operating distance

This test is performed at rated voltage or at any voltage within the voltage range with new photoelectric proximity switches, except when specified as verification after another test, in clean air conditions, at any ambient temperature between $23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, both in darkness (less than 300 lx ) and at an ambient light of 5000 lx obtained as per 8.4.2.3.

The excess gain, as stated by the manufacturer in the documentation, shall be achieved.

### 8.4.2.3 Source for ambient light

A light source with a colour temperature between 3000 K and 3200 K shall be used. The light intensity is measured with a luxmeter and obtained by varying the distance between the light source and the luxmeter.

### 8.4.2.4 Type T

In the vicinity of the maximum and minimum operating distances, the emitter is moved, not faster than $1 \mathrm{~mm} / \mathrm{s}$ in an axial direction, towards the receiver and the maximum and minimum operating distances are measured:
a) without ambient light (300 Ix);
b) with ambient light ( 5000 Ix ).

The light source is positioned at an angle of $5^{\circ} \pm 1^{\circ}$ to the reference axis and is aimed at the receiver (see Figure 11a, type T).

### 8.4.2.5 Type R

The reflector is installed on the reference axis at the maximum of the operating range $r_{0}$.

The light source is positioned at an angle of $5^{\circ} \pm 1^{\circ}$ to the reference axis and is aimed at the photoelectric proximity switch (see Figure 11b, type R).

### 8.4.2.6 Type D

a) For operating distances not exceeding 400 mm :

The light source is positioned at an angle of $15^{\circ} \pm 1^{\circ}$ to the reference arig aimed at the target (see Figure 11d, type D).
The device is moved, not faster than $1 \mathrm{~mm} / \mathrm{s}$ in an axial dires towards the target and
the sensing distance is measured:

1) without ambient light ( 300 Ix );
2) with ambient light ( 5000 Ix ).
b) For operating distances above 400

The light source is positimatean angle of $15^{\circ} \pm 1^{\circ}$ to the reference axis and is aimed at the device (see Figure ndrye D).
In the vicinity of the sensing distance, the target is moved, not faster than $1 \mathrm{~mm} / \mathrm{s}$ in an axial direction, towards the photoelectric proximity switch and the sensing distance is measured:

1) without ambient light ( 300 lx );
2) with ambient light ( 5000 Ix ).

### 8.4.2.7 Results to be obtained

The sensing range shall be as stated by the manufacturer (see 7.2.1.3.4 and 7.2.1.3.5).


Figure 11b - Type R, emitter-receiver and reflector


Figure 11c - Type D, emitter-receiver and object


Figure 11d - Type D, emitter-receiver and target

Figure 11 - Testing of the sensing range (see 8.4)


NOTE To avoid angular influence from one target to another, the disc shall be constructed to include at least 10 targets, if the rated operating distance $\left(s_{n}\right)$ is less than 10 mm , or 6 targets for higher operating distances.

Figure 12 - Methods for measuring the operating frequency of inductive, capacitive and non-mechanical magnetic proximity switches (if applicable)

### 8.5 Testing for the frequency of operating cycles

When the proximity switch frequency of operating cycles exceeds the limit of the measuring method described, the manufacturer shall state the method of measurement.

### 8.5.1 Method for measuring the frequency of operating cycles

a) Inductive, capacitive and non-mechanical magnetic proximity switches

As shown in Figure 12, the targets are fixed on the front (method 1 ) or sides (method 2 ) of teeth on a rotating disc, the spaces between the teeth being $2 a$, in such a manner that they can pass in front of the sensing face of the proximity switch at a distance equal to half of the rated operating distance.
Each target shall have the same dimensions as those specified in 8.3.2.1. The output signal of the proximity switch is measured with the speed of rotation of the disc increasing from 0 .
The targets of the rotating disc shall be connected to earth when capacitive proximity switches are tested.
An illustration of the output signal of proximity switches is given in Figure 14.
With the speed increasing, the durations $t_{1}$ and $t_{2}$ decrease.
For direct current proximity switches, the rated value of the operating frequency is obtained when $t_{1}$ or $t_{2}$ correspond to $50 \mu \mathrm{~s}$, or when the characteristics of the output signal, in the "ON" or "OFF" states, reaches the values specified in the relevant annexes.
For alternating current proximity switches, the rated value of the operating frequency is obtained when either $t_{1}$ or $t_{2}$ corresponds to one-half period of the supply frequency ( $f_{\mathrm{b}}$ ).
b) Ultrasonic proximity switch

As shown in Figure 13 the targets are fixed on the front (method 1 ) or sides (method 2 ) of teeth on a rotating disc.
The spaces between the teeth being $3 a$ in such a manner that they can pass in frontof the sensing face at the minimum operating distance and the proximity switch shalldeaghested to this operating distance.


Method 1


IEC $\quad 359194$

> 1 = proximity switch
> 2 = target
> 3 = disc in non-magnetic and non-conducting material

NOTE 1 To avoid angular influence from one target to another, the disc shall be constructed to include at least 10 targets.

NOTE 2 Method 2 is only applicable to narrow-beam angled proximity switches.
Figure 13 - Methods for measuring the operating frequency f, ultrasonic proximity switch


Figure 14 - Output signal of direct current proximity switch during the measurement of operating frequency $f$

The operating frequency $f$ is determined from the following formula:

$$
f=\frac{1}{t_{1}+t_{2}}
$$

### 8.5.2 Results to be obtained

The values obtained shall be not less than those given in the relevan \&oxes.

### 8.5.3 Photoelectric proximity switches

### 8.5.3.1 Measurement means

As shown in Figure 15, a rotating discd Wty one or more targets is fixed parallel to the sensing face of the proximity switch padatance chosen by the manufacturer, and in such a way that the reference axis of the pOAmy switch passes through the centre of the target.


Type T
(through beam)
1 Receiver
2 Disc
3 Emitter
4 Reference sensor


Type R
(retro-reflective)
1 Emitter-receiver
2 Disc
3 Reflector
4 Reference sensor


IEC 827/99

Figure 15 - Measurement means for turn-on time $t_{\text {on }}$ and turn-off time $t_{\text {off }}$

For types $T$ and $R$, the effective beam shall be fully broken by the rotating target.

For type D, the surface of the rotating target shall be made of the same material as the standard target.

If the operating distance affects the tests, then the manufacturer shall state the test distance.

A reference sensor having a switching frequency at least ten times higher than the equipment under test (EUT) is also put around the disc.

A recorder (for example, a memory oscilloscope) can draw simultaneously curves delivered by the proximity switch and by the reference sensor (see Figures 16 and 17).

### 8.5.3.2 Measurement of turn-on time ( $t_{\text {on }}$ )

The positional relationship between the reference sensor and the EUT shall be adjusted while moving the disc slowly so that the output of the reference sensor changes its state simultaneously with the output of the EUT.

To measure $t_{\text {on }}$, the disc speed is adjusted so that the EUT is operated at approximately half of the maximum operating frequency stated by the manufacturer.

The turn-on time $t_{\text {on }}$ is the maximum observed delay between the output of the reforper sensor and the change of state of the EUT output (see Figure 16).


NOTE The diagram refers to logical states $A$ and $B$. A and B will differ according to the type of proximity switch.
Figure 16 - Turn-on time $t_{\text {on }}$ measurement

### 8.5.3.3 Measurement of turn-off time ( $t_{\text {off }}$ )

The positional relationship between the reference sensor and the EUT shall be adjusted while moving the disc slowly so that the output of the reference sensor changes its state simultaneously with the output of the EUT.

To measure $t_{\text {off }}$, the disc speed is adjusted so that the EUT is operated at approximately half of the maximum operating frequency stated by the manufacturer.

The turn-off time $t_{\text {off }}$ is the maximum observed delay between the noted output of the reference sensor and the change of state of the EUT output (see Figure 17).


NOTE The diagram refers to logical states $A$ and $B$. A and $B$ will differ according to the type of proximity switch.

Figure 17 - Turn-off time $\boldsymbol{t}_{\text {off }}$ measurement

### 8.5.3.4 Results to be obtained

The frequency of operating cycles $f$ determined by the formula given in 7.2.1.6.2 shall be not less than that given by the manufacturer.

### 8.6 Verification of the electromagnetic compatibility

### 8.6.1 General

The tests shall be performed under the following conditionsi

- the proximity device mounted in free air shallpeConnected to a load corresponding to the rated operational current $\left(I_{\mathrm{e}}\right)$ and supplan with its rated operational voltage (or the maximum voltage of its voltage
 type of cable used shall be specified by the manufacturer and recorded in the test report.
The test shall be performed:
a) with the target set at a position such that the switching element is in the OFF-state;
b) with the target set at a position such that the switching element is in the ON-state;
- for inductive and capacitive proximity devices, the target shall be positioned at $1 / 3 s_{n}$ or $3 s_{n}$;
- for photoelectric proximity devices, two tests shall be performed. The target shall firstly be positioned such that the excess gain is 2 , then:
- without the target for type D, or
- without the reflector for type R, or
- without the emitter for type T.

For the test according to 7.2 .6 .2 .4 , the following additional mounting conditions apply:

- cylindrical proximity devices shall be mounted in a non-embedded manner according to Figure A. 2 (IA) b). A metal washer, clamped between the lock-nuts of the device, shall be connected to the reference ground plane;
- rectangular proximity devices shall be mounted in a non-embedded manner on a flat metal plate which shall be connected to the reference ground plane;
- the method of connection to the reference ground plane shall be in accordance with the manufacturer's instructions, if given, and shall be stated in the test report.


### 8.6.2 Immunity

### 8.6.2.1 Electrostatic discharges

The test shall be performed according to IEC 61000-4-2 and 7.2.6.2.2, and shall be repeated 10 times at each measuring point, with a minimum time interval of 1 s between pulses.

### 8.6.2.2 Radiated radio-frequency electromagnetic fields

The test shall be performed according to IEC 61000-4-3 and 7.2.6.2.3.

### 8.6.2.3 Electrical fast transients/bursts

The test shall be performed according to IEC 61000-4-4 and 7.2.6.2.4, with all the connecting leads placed in the capacitive coupling clamp.

### 8.6.2.4 Conducted disturbances induced by radio-frequency fields

 The ests shal be performed according to 1 EC $61000 \cdot-4.6$ and 7.2 .6 .2 g 2 g 2 g
### 8.6.2.5 Power-frequency magnetic fields

The test shall be performed according to IEC 61 月0-Co and 7.2.6.2.7.

### 8.6.2.6

The test shall be performeatcoding to IEC 61000-4-11 and 7.2.6.2.8.

### 8.6.2.7 Harmonics in the supply

Test levels are under study for the future.

### 8.6.3 Emission

The test shall be performed according to CISPR 11, group 1, class A, and 7.2.6.3.
These limits are given for proximity devices exclusively built for an industrial environment (environment A). When they may be used in a domestic environment (environment B), the following notice shall be included in the instructions for use:

## NOTICE

This is a class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

### 8.7 Test results and test report

The test results shall be documented in a comprehensive test report. The test report shall present the objective, the results and all relevant information of the tests. The test report shall define the proximity device under test, including the cable layout and the necessary auxiliary equipment. Any deviation from the test plan shall be mentioned.

Where a range of proximity devices are made according to the same principle and design, and using the same type of components, tests may be performed on representative samples. Furthermore based on first results, the testing laboratory may limit the tested frequency range for radiation or conduction tests and shall include in the report the frequency range used.

## Annex A

(informative)

## Typical dimensions and operating distances of proximity switcheom

## A. 1 (IA) Dimensions

The dimensions and thread sizes shown in Figure A. 1 (IA) shall be according to Table A. 1 (IA). Within the dimensional limits of $d_{1}$ and $I_{2}$ all rigid parts of the connecting leads shall be included. The diameter of unthreaded portion $d_{2}$ shall not exceed the minor diameter of the thread. For type 11 embeddable, the thread can be omitted and the diameter reduced to $d_{2}$ on a length not exceeding $I_{3}=1 \mathrm{~mm}$. For type 12 the thread can be omitted and the diameter reduced to $d_{2}$ on a length not exceeding $I_{3}=2 s_{n}$.


Figure A. 1 (IA) - Dimensions

Table A. 1 (IA) - Dimensions in millimetres


## A. 2 (IA) Rated operating distances

The rated operating distance, for embeddable and non-embeddable proximity switches, shall be according to Table A. 2 (IA). The rated operating distance is a conventional quantity, it does not take into account either manufacturing tolerances or variations due to external conditions such as voltage and temperature (see 2.3.1.1 and 7.2.1.3.1).

Table A. 2 (IA) - Rated operating distances in millimetres

Type I1 - Embeddable		Type I2 - Non-embeddable	
Form and size	Rated operating   distance	Form and size	Rated operating   distance
A08	1	A08	2
A12	2	A12	4
A18	5	A18	8
A30	10	A30	15

## A. 3 (IA) Installation (mounting)

Embeddable proximity switches, when installed in damping material shall be according to Figure A. 2 (IA) a.

Non-embeddable proximity switches when installed in damping material shall be according to Figure A. 2 (IA) b.


Figure A. 2 (IA) - Installation (mounting)

## A. 4 (IA) Frequency of operating cycles (f) in operating cycles per second Minimum requirements

Form and size	Installation	Switching element function: A or B		
		Type of output		
		P or N	D	F
A08	1	500	300	
A12	2	300	200	
A18	1	400	200	5
	2	200	100	
A30	1	200	100	
	2	100	50	

NOTE The frequency of operating cycles are only stated for the most common types. For all other possible types (according to Table 1: Classification) the frequency of operating cycles shall be stated by the manufacturer.

## MODEL IB

INDUCTIVE CYLINDRICAL PROXIMITY SWITCH
WITH SMOOTH BARREL

## A. 1 (IB) Dimensions

The dimensions shown in Figure A. 1 (IB) shall be accordireto Yable A. 1 (IB). Within the dimensional limits of $d_{1}$ and $I_{2}$, all rigid parts of the conering leads shall be included.
No part of the proximity switch within the lon shall exceed the diameter $d_{1}$.


Figure A. 1 (IB) - Dimensions
Table A. 1 (IB) - Dimensions in millimetres

Sensing means:   inductive (I)	Dimensions			
1 Embeddable type	$d_{1}$	$I_{1}$   min.	$I_{2}$   max.	$I_{3}$   max.
I1B04	4	25	50	0,5
I1B06	6,5	40	60	1

## A. 2 (IB) Rated operating distances

The rated operating distance shall be according to Table A. 2 (IB). The rated operating distance is a conventional quantity. It does not take into account either manufacturing tolerances or variations due to external conditions such as voltage and temperature (see 2.3.1.1 and 7.2.1.3).

Table A. 2 (IB) - Rated operating distance in millimetres


## A. 3 (IB) Installation (mounting)



IEC 910/92

Figure A. 2 (IB) - Installation in damping material
A. 4 (IB) Frequency of operating cycles (f) in operating cycles per second Minimum requirements

Form and size	Switching element function: A or B		
		Type of output	
		P or N	D
B04	1	600	300
B06	1	500	250
NOTE Same as A.4 (IA).			

## MODEL IC

## INDUCTIVE RECTANGULAR PROXIMITY SWITCHES WITH SQUARE CROSS-SECTION

## A. 1 (IC) Dimensions

A.1.1 (IC) Type I1C26 inductive, embeddable, 26 mm a mr o. Overall and mounting dimensions shall be according to Figure A. 1 (IC). We rigid part of the cable assembly is included in the overall dimensions. The cable try . anchorage as well as the tightness of a caplin $N$ internal diameter of 7 mm to 10 mm .


IEC 911/92

Figure A. 1 (IC) - Dimensions in millimetres
A.1.2 (IC) Type I2C35 inductive, non-embeddable, $35 \mathrm{~mm} \times 35 \mathrm{~mm}$. Overall and mounting dimensions shall be according to Figure A.1.2 (IC). The rigid part of the cable assembly is included in the overall dimensions.


Figure A.1.2 (IC) - Dimensions in millimetres
A.1.3 (IC) Type I2C30 inductive, non-embeddable and type I1C30 inductive embeddable $30 \mathrm{~mm} \times 30 \mathrm{~mm}$. Overall and mounting dimensions shall be according to Figure A.1.3 (IC). The rigid part of the cable assembly is not included in the overall dimensions.


Figure A.1.3 (IC) - Dimensions in millimetres
A.1.4 (IC) Type I2C40 inductive, non-embeddable - Type I1C40 inductive embeddable $40 \mathrm{~mm} \times 40 \mathrm{~mm}$. Overall and mounting dimensions shall be according to Figure A. 1.4 (IC). The


Figure A.1.4 (IC) - Dimensions in millimetres

## A. 2 (IC) Rated operating distance

The rated operating distance shall be according to Table A. 2 (IC). The rated operating distance is a conventional quantity, it does not take into account either manufacturing tolerances or variations due to external conditions such as voltage and temperature (see 2.3.1.1 and 7.2.1.3).

Table A. 2 (IC) - Rated operating distance in millimetres

Type	Rated operating distance
I1C26 embeddable	10
C35 non-embeddable	15
I1C40 embeddable	15
I2C40 non embeddable	20
I1C30 embeddable	10
I2C30 non-embeddable	15

## A. 3 (IC) Installation (mounting)

A.3.1 (IC) Type I1C proximity switch installed in damping material is shown in Figure A. 2 (IC). Figure A. 2 (IC) a shows the proximity switch with front sensing face. Figure A. 2 (IC) b shows the proximity switch with side sensing face installed.


Figure A. 2 (IC) - Installation of a I1C proximity switch in damping material
A.3.2 (IC) Type I2C proximity switch installed in damping material as shown in Figure A. 3


IEC 915/92
Figure A. 3 (IC) - Installation of I2C35 in damping material
A. 4 (IC) Frequency of operating cycles (f) in operating cycles per second Minimum requirements

Form and size	Installation	Switching element function: A or B		
		Type of output		
		P or N	D	F
C26	1	40	40	
C35	2	100	50	5
C30	1	70	50	
and	1	50	50	
C40				
NOTE				

## MODEL ID

INDUCTIVE RECTANGULAR PROXIMITY SWITCHES WITH RECTANGULAR CROSS-SECTION

## A. 1 (ID) Dimensions

Type I2D non-embeddable proximity switches shall haverall \&nd mounting dimensions according to Figure A. 1 (ID) and Table A. 1 (ID). Partsd ARCable assembly are not included in the overall dimensions.


Figure A. 1 (ID) - Dimensions

Table A. 1 (ID) - Dimensions in millimetres

Type	$\boldsymbol{I}_{\mathbf{1}}$ max.	$\boldsymbol{I}_{\mathbf{2}}=\boldsymbol{b}_{\mathbf{2}}$	$\boldsymbol{b}_{\mathbf{1}}$ max.
I2D60	120	45	60
I2D80	135	65	80

## A. 2 (ID) Rated operating distance

The rated operating distance for non-embeddable proximity switches shall be accordingo Table A. 2 (ID). The rated operating distance is a conventional quantity, if does not (a)iato account either manufacturing tolerances or variations due to external conditios. dech as voltage and temperature (see 2.3.1.1 and 7.2.1.3).

Table A. 2 (ID) - Rated operating distancesin nilinetres

Type	25
I2D60 non-embeddable	
I2D80 non-empeldated Patating distance	

## A. 3 (ID) Installation (mounting)

The installation of the I2D60 and I2D80 proximity switches in damping material is shown in Figure A. 2 (ID).


Free zone or non-damping material
(for instance a non-metallic material)

Figure A. 2 (ID) - Installation of I2D in damping material

## A. 4 (ID) Frequency of operating cycles (f) in operating cycles per second -

 Minimum requirements| Form and size | Installation | Switching element function: A or B |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Type of output |  |  |
|  |  | P or N | D | F |
| D60 | 2 | 25 | 15 | 5 |
| D80 | 2 | 10 | 10 | 5 |
| NOTE Same as A.4 (IA). |  |  |  |  |

## MODEL CA

## CAPACITIVE CYLINDRICAL PROXIMITY SWITCHES WITH THREADED BARREL

## A. 1 (CA) Dimensions

The dimensions are thread sizes shown in Figure A. 1 (8) Bacording to Table A. 1 (CA). Within the dimensional limits of $d_{1}$ and $I_{2}$, all righ ${ }_{\text {ald }}$ of the connecting leads shall be included. The diameter of unthreaded portion shall not exceed the minor diameter of the thread. The thread can be omitted and diameter reduced to $d_{2}$ on a length not exceeding $I_{3} \leq 2 \times s_{n}$.


Figure A. 1 (CA) - Dimensions
Table A. 1 (CA) - Dimensions in millimetres

Sensing means:	Dimensions					
	Body			Nuts		
Type	$\begin{gathered} d_{1} \\ \text { Thread size } \end{gathered}$	$\begin{gathered} I_{1} \\ \min . \end{gathered}$	$\begin{gathered} I_{2} \\ \max . \end{gathered}$	AF	$\underset{+0,15}{m}$	$\begin{aligned} & d_{3} a \\ & \max . \end{aligned}$
CA18	M18 $\times 1$	50	100	24	4	28
CA30	$\mathrm{M} 30 \times 1,5$	50	100	36	5	42

## A. 2 (CA) Rated operating distance ( $s_{n}$ )

The rated operating distance is adjusted by the manufacturer under mounting conditions stare in Clause A. 3 (CA).
The rated operating distance shall be set according to Table A. 2 (CA). JT At operating distance is a conventional quantity, it does not take into accoin eln manufacturing tolerances or variations due to external conditions such as volaga herature, humidity and mounting conditions.


## A. 3 (CA) Installation (mounting)



IEC 918/92

Figure A. 2 (CA) - Installation (mounting)

## A. 4 (CA) Frequency of operating cycles (f)

Minimum requirements: 10 operating cycles per second for type A18 and type A30.

MODEL CB
CAPACITIVE PROXIMITY SWITCHES WITH SMOOTH BARREL
(Under consideration.)

## MODEL CC

CAPACITIVE RECTANGULAR PROXIMITY SWITCHES WITH SQUARE CROSS-SECTION

## A. 1 (CC) Dimensions

Overall and mounting dimensions of type C30 shall be accrado Fgure A. 1 (CC) a and type C40 shall be according to Figure A. 1 (CC) b. Apart frdmese dimensions, the design of the proximity switch is not restricted. The mounting dimensions are included within the dimensions of the housing, but the cable entry dimensionsanot.


Figure A. 1 (CC) a - Dimensions, type C30 in millimetres


Figure A. 1 (CC) b - Dimensions, type C40 in millimetres

## A. 2 (CC) Rated operating distances ( $s_{n}$ )

The rated operating distance is adjusted by the manufacturer under mounting conditions stated in Clause A. 3 (CC).

The rated operating distance shall be according to Table A. 2 (CC). The rated operating distance is a conventional quantity, it does not take into account either manufacturing tolerances or variations due to external conditions such as installation (mounting), voltage, humidity and temperature.

Table A. 2 (CC) - Rated operational distance in millimetres

Type	Rated operating distance
CC30	10
CC40	15

## A. 3 (CC) Installation (mounting)



Figure A. 2 (CC) - Installation (mounting)

## A. 4 (CC) Frequency of operating cycles (f)

Minimum requirements: 10 operating cycles per second for type C30 and type C40.

## MODEL CD

## CAPACITIVE RECTANGULAR PROXIMITY SWITCHES WITH RECTANGULAR CROSS-SECTION

## A. 1 (CD) Dimensions

Type D80 proximity switches shall have overall and•proing dimensions according to Figure A. 1 (CD). Parts of the cable assembly are not ind dad in the overall dimensions.


Figure A. 1 (CD) - Dimensions in millimetres

## A. 2 (CD) Rated operating distance ( $s_{n}$ )

The rated operating distance is adjusted by the manufacturer under mounting conditions stated in Clause A. 3 (CD).

The rated operating distance shall be: $s_{\mathrm{n}}=40 \mathrm{~mm}$.

The rated operating distance is a conventional quantity, it does not take into account either manufacturing tolerances or variations due to external conditions such as installation (mounting), voltage, humidity and temperature.

## A. 3 (CD) Installation (mounting)

The proximity switch shall be mounted on damping material. The dimensions of the dampra material shall be at least three times the outside dimensions of the capacitive proximity Damping material in opposite of the sensing face shall not be closer than $3 \mathrm{~g} \mathrm{e}^{S}$


Damping material
(earthed metal)
IEC 921/92

Figure A. 2 (CD) - Installation (mounting)

## A. 4 (CD) Frequency of operating cycles (f)

Minimum requirement: 10 operating cycles per second.

## MODEL UA

## THREADED BARREL ULTRASONIC CYLINDRICAL PROXIMITY SWITCHES

## A. 1 (UA) Dimensions

The dimensions and thread size shown in Figure A. 1 (UA) according to Table A. 1 (UA). Within the dimensional limits of $d_{1}$ and $I_{2}$, all riglnplits of the connecting leads shall be included. The diameter $d_{2}$ may exceed the diameter of the thread according to extended sensing ranges. The diameter $d_{4}$ of the unthrad part shall not exceed the minor diameter of the thread.


Figure A. 1 (UA) - Dimensions
Table A. 1 (UA) - Dimensions in millimetres

Code	Dimensions							
	Body					Nuts		
	$\begin{gathered} d_{1} \\ \text { thread size } \end{gathered}$	$d_{2}$	$I_{1}$	$I_{2}$	13	AF	$\underset{+0,15}{m}$	$\begin{aligned} & d_{3} a \\ & \max \end{aligned}$
U3A18..A	M18 $\times 1$	M18	30	100	0	24	4	28
U3A30..A	M $30 \times 1,5$	M30	50	150	0	36	5	42
U3A30.. B	M $30 \times 1,5$	M30	50	150	0	36	5	42
U3A30.. E	M $30 \times 1,5$	70 max.	50	150	35	36	5	42
U3A42..D	M $42 \times 1$	M42	35	150	0	50	6	57
U3A42..E	M42 $\times 1$	70 max.	50	150	35	50	6	57

[^2]
## A. 2 (UA) Sensing range

The operating distances max. and min. for ultrasonic proximity switches shall be accordin $\mathbb{P}$ Table A. 2 (UA). These distances are conventional quantities, they do not take into (O) variations due to external conditions such as temperature, altitude and humidity $S$.

Sensing range	from		$\underset{\mathrm{mm}}{\text { Target size }}$
A	60	300	$10 \times 10$
B		800	$20 \times 20$
D		2000	$100 \times 100$
E	800	6000	$100 \times 100$

## A. 3 (UA) Installation (mounting)

According to the instructions of the manufacturer.

## A. 4 (UA) Frequency of operating cycles (f)

Shall be stated by the manufacturer either in operating cycles per second or in operating cycles per minute.

## MODEL UC

## ULTRASONIC RECTANGULAR PROXIMITY SWITCHES WITH SQUARE CROSS-SECTION

## A. 1 (UC) Dimensions

Overall and mounting dimensions shall be according to raris A. (UC). Apart from these dimensions, the design of the proximity switch is not estidted. Within the overall dimensions of the housing, the mounting dimensions are inghd but the cable entry dimensions are not included.


Figure A. 1 (UC) - Dimensions of type U3C40

## A. 2 (UC) Sensing range

The maximum and minimum operating distances for ultrasonic proximity switches shall be according to Table A. 1 (UC). These distances are conventional quantities, they do not take into account variations due to external conditions such as temperature, altitude and humidity.

Table A. 1 (UC) - Requirements for sensing range in millimetres

Sensing range	from	to	Target size   mm
A	60	300	$10 \times 10$
C	300	1000	$20 \times 20$

## A. 3 (UC) Installation (mounting)

According to the instructions of the manufacturer.

## A. 4 (UC) Frequency of operating cycles (f)

Shall be stated by the manufacturer either in operating cycles per second or in operating cycles per minute.

## MODEL UD

## ULTRASONIC RECTANGULAR PROXIMITY SWITCHES WITH RECTANGULAR CROSS-SECTION

## A. 1 (UD) Dimensions

Type U3D80 ultrasonic proximity switches shall have pain ald mounting dimensions according to Figure A. 1 (UD). Parts of the cable asfeply are not included in the overall dimensions.


Figure A. 1 (UD) - Dimensions of type U3D80 in millimetres

## A. 2 (UD) Sensing range

The operating distances shall be according to Table A. 2 (UD). These distances are conventional quantities, they do not take into account variations due to external conditions such as temperature, altitude and humidity.

Table A. 2 (UD) - Requirements for sensing range in millimetres

Sensing range	from	to	Target size   mm
A	60	300	$10 \times 10$
C	300	1000	
E	800	6000	

A. 3 (UD) Installation (mounting)

According to the instructions of tarenanuracturer.

## A. 4 (UD) Frequency of operating cycles (f)

Shall be stated by the manufacturer either in operating cycles per second or in operating cycles per minute.

## Annex B

 (normative)
## Class II proximity switches insulated by encapsulation -

## B. 1 General

This annex specifies constructional requirements adests for class II proximity switches or parts of devices in which insulation of ch, "according to IEC 61140, is achieved by encapsulation.
All parts which are not arallated shall follow the requirements specified for double insulation concerning cleararces and creepage distances.

## B. 2 Definitions

The following definitions apply to this annex.

## B.2.1 <br> encapsulation

process by which all components, conductors and ends of integral cables are encased in an insulating compound by suitable means such as embedding or potting

## B.2.1.1

## embedding

process of completely encasing electrical device(s) by pouring a compound over it (them) in a mould, and removing the encased device(s) from the mould after solidification of the compound

## B.2.1.2

potting
embedding process in which the mould remains attached to the encased electrical device(s)

## B.2.2

compound
thermosetting, thermoplastic, catalytically cured and elastomeric materials with or without fillers and/or additives, after solidification

## B.2.3

temperature range of the compound
the ambient temperature range as stated in 6.1.1 of IEC 60947-1

## B. 5 Marking

Proximity switches according to this annex shall be marked with the following symbol


This symbol is 60417-2-IEC-5172.

## B. 7 Constructional and functional requirements

## B.7.1 Choice of compound

The compound shall be chosen so that the encapsulated proximity switches coly the tests in B.8.

## B.7.2 Adhesion of the compound

The adhesion of the compound shall be sufficient to dedpt the ingress of moisture between the compound and all encapsulated parts and topelen movement of the encapsulated portion of the cable if any.
Compliance shall be verified by trens the B.8.1.2.5 and B.8.1.2.2.


IEC 360/94
Figure B. 1 - Encapsulated device

## B.7.3 Dielectric properties

Subclause 7.2.3 applies with the following changes:

When $U_{\text {imp }}$ is declared by the manufacturer, the test voltage shall be the next higher category of the maximum rated operational voltage in the first column of Table H. 1 or H. 2 of Annex H of IEC 60947-1 for the stated overvoltage category.

When $U_{\text {imp }}$ is not declared by the manufacturer, the test voltage shall be the voltage stated in Table 6 of this standard plus 1000 V .

## B. 8 Tests

## B.8.1 Kind of tests

## B.8.1.1 General

Subclause 8.1.1 of IEC 60947-1 applies.

## B.8.1.2 Type tests

The following sequence of six tests shall be applied to each of three samples in the specified order.

## B.8.1.2.1 Dielectric tests in new conditions

Subclause 8.3.3.4 of IEC 60947-1 applies with the exception that the rade voltage shall be applied between the stripped joined ends of the cable or the shortedarninals and any point of the surface (or metallic foil on the surface) of the encapsurarodevice (see Figure B1).

No breakdown of the insulation shall occur.

## B.8.1.2.2 Cable tests (if applicapid)

Proximity switches provid\&ida Nitegrally connected cables shall comply with requirements of Annex C.

## B.8.1.2.3 Rapid change of temperature test

Test Na shall be performed in accordance with IEC 60068-2-14 with the following values:

- $T_{\mathrm{A}}$ and $T_{\mathrm{B}}$ are the minimum and the maximum temperatures stated in B.2.3;
- transition time $t_{2}$ : 2 min to 3 min ;
- number of cycles: 5;
- exposure time $t_{1}$ : 3 h .

After the test, no visible damage shall be observed. ${ }^{2}$

## B.8.1.2.4 Impact test

The test is performed as follows (see Figure B.2).
The sample is placed on a rigid support.
Three impacts of $0,5 \mathrm{~J}$ shall be applied near the centre of the largest surface or the longest axis (for cylindrical shape) of the encapsulated device.

The impacts are obtained by dropping a steel ball $0,25 \mathrm{~kg}$ from a height of $0,20 \mathrm{~m}$.

[^3] than $0,1 \mathrm{~mm}$.

After the test, no visible damage shall be observed ${ }^{3}$.

## B.8.1.2.5 Damp heat, cyclic test

The test Db shall be performed in accordance with IEC 60068-2-30 with the following values:

- upper temperature: $55^{\circ} \mathrm{C}$;
- number of cycles: 6.

The test report shall state which variant is applied: variant 1 or variant 2.

After the test, no visible damage shall be observed. ${ }^{4)}$

## B.8.1.2.6 Dielectric test after stresses

Following test B.8.1.2.5, the dielectric properties shall be checked by respecting tests specified in 8.3.3.4.1 and 8.3.3.4.2 with the test voltage being applied for 1 min .

The results to be obtained shall be as stated in 8.3.3.4.3 with the addition that the leakage current shall not exceed 2 mA at $1,1 U_{i}$.

## B.8.1.3 Routine tests

Subclause 8.1.3 applies but the dielectric test is mandatory.

[^4]
## Annex C <br> (normative)

## Additional requirements for proximity switches with integrally connected cables

## C. 1 General

This annex gives additional requirements applying provin switches with integrally connected cables for electrical connection to other equipmen add to the power source.

The cable integrally connected to suphrdxinity switches is not considered replaceable by the user. This annex states the congtructional and performance requirements for the cable, the cable anchorage and the ance seal.

## C. 2 Definitions

The following definitions apply to this annex:

## C.2.1

cable connected proximity switch
proximity switch having integrally connected leads for electrical connection to other equipment and/or to the power source

## C.2.2

cable entrance sealing means
sealing means between cable and device enclosure providing the required protection from cable abrasion and which may provide required sealing of enclosure and cable anchorage

## C.2.3

## cable anchorage

means to relieve mechanical stress from the cable termination so as to prevent damage to the electrical connection between the device and the cable

## C. 7 Constructional and performance requirements

## C.7.1 Constructional requirements

## C.7.1.1 Cable material

The proximity switch shall be provided with flexible cable of appropriate voltage, current and temperature rating and environmental condition.

NOTE The length of cable provided may be specified in the relevant product standard.

## C.7.1.2 Cable anchorage

The cable anchorage shall be such that a force being applied to the cable is not transmitted to electrical connections integral to the device.

Movement of the cable in to or out of the proximity switch shall not cause damage to the cable connection or internal parts of the device.

## C.7.1.3 Cable entrance sealing means

A sealing means shall be provided at the cable entrance to the proximity switch suitable for the
degree of protection specified for the proximity switch (see Annex C of IEC 60947-1).
NOTE The sealing means may be inherent in the device encapsulation.

## C.7.2 Performance requirements

The cable and the cable entrance sealing means shall be capable of withot ming the tests given in Clause C.8.

## C. 8 Tests

The purpose of these tests is to ensure integridy the cable anchorage during transit handling and installation. Once installed, the proxidivy other.

## C.8.1 Type tests

The following sequence of four tests shall be performed on a representative sample in the specified order.

## C.8.1.1 Pull test

The cable shall be subjected to a steady pull along the axis of the cable entry, applied to the insulating jacket of the cable for a duration of 1 min.
[① 1 Subclause 8.2.4.4 of IEC 60947-1 applies. ${ }^{\text {A }}$ ]

## C.8.1.2 Torque test

The cable shall be subjected to a torque of $0,1 \mathrm{Nm}$ or limited to the value giving an angle of torque of $360^{\circ}$. The torque shall be applied to the cable, clockwise for 1 min and then counterclockwise for 1 min , at a distance of 100 mm from the proximity switch entrance.

## C.8.1.3 Push test

The push force shall be applied along the axis of the cable as close as possible to the cable entrance.

The force is increased slowly to 20 N . The force shall be applied for 1 min for each time and with a 1 min pause between applications.

After the tests, no visible damage of the cable entrance sealing means and no displacement of the cable shall be observed.

## C.8.1.4 Bend test

The cable shall be loaded and bent in the following manner:
a) Suspend a 3 kg mass by attaching it to the cable 1 m from the cable entrance and with the axis of the cable entrance vertical.
b) Tilt the proximity switch $90^{\circ}$ to cause a $90^{\circ}$ bend in the cable, maintaining that position for 1 min .
c) Tilt the proximity switch $90^{\circ}$ in the opposite direction relative to vertical so as to cause an opposite $90^{\circ}$ bend in the cable, maintaining the position for a duration of 1 min .

## C.8.2 Results to be obtained

There shall be no damage to the cable, cable sealing means, cable entrance or electrical connecting means of the proximity switch. This will be verified by visual examination apa verification of compliance with the stated IP designation.

## Annex D <br> (normative)

## Integral connectors for plug-in proximity switches

[41) M12, M8 or M5 integral connectors used for plug-in proximity switches shaldeccordance with relevant parts of the IEC 61076-2 series. They shall provide a mini yorotection rating of IP65 when correctly coupled with their mating connector.

Figure D.1, Figure D.2, Figure D.3, Figure D.4, Figurepofigure D.6, Figure D. 7 and Figure D. 8 show examples of these connectors. $A_{1}$


NOTE 1 Pin identification numbering is not necessary.
NOTE 2 For a provisional period the use of $1 / 2$ " UNF is permissible as an alternative to M12 on a.c. proximity switches.

NOTE 3 Protective earth pin shall be omitted for class II proximity switches.



NOTE The central pin may be omitted when not necessary.
Figure D. 2 - M12 $\left.\boldsymbol{A}_{1}\right\rangle$ thread $\left\langle{ }_{\|} \boldsymbol{A}\right.$ 5-pin integral connector for d.c. proximity switches




Figure D.4-8 mm बौ7 thread $\mathbb{A}_{4}$ 4-pin integral connector for d.c. proximity switches


NOTE 1 Pin identification numbering is not necessary.
NOTE 2 For a provisional period, the use of $1 / 2 "-20 U N F-2 A$ is permissible as an alternative to M12 on a.c. proximity switches.

NOTE 3 The protective earth pin shall be omitted for class II proximity switches.
Figure D. 5 - M12 荎 1 thread 画 4-pin integral connector for a.c. proximity switches


NOTE 1 Pin identification numbering is not necessary.
NOTE 2 For a provisional period, the use of $1 / 2$ "-20UNF-2A is permissible as an alternative to M12 on a.c. proximity switches.
NOTE 3 The protective earth pin shall be omitted for class II proximity switches.
Figure D. 6 - M12 $\left.A_{1}\right\rangle$ thread $\left\langle A_{1}\right.$ 5-pin integral connector for a.c. proximity switches


NOTE 1 Pin identification numbering is not necessary.
NOTE 2 For a provisional period, the use of $1 / 2 "-20 U N F-2 A$ is permissible as an alternative to M12 on a.c. proximity switches.

NOTE 3 The protective earth pin shall be omitted for class II proximity switches.

[1]

## 4-pin



N


IEC 1716/12

Figure D. 8 - M5 thread 4-pin/3-pin integral connector for d.c. proximity switches $A_{1}$

## Annex E

# Additional requirements for proximity switches suitable for use in strgif magnetic fields 

## E. 1 General

The provisions of this standard apply, unleas \$0alfied otherwise in this annex.

## E.1.2 Scope and object + .

This annex is applicable for proximity switches which operate within strong magnetic fields, for example electric weld fields (normally alternating) or electrolytic fields (normally constant).

The object of this annex is to state the performance and the test conditions for proximity switches which operate in strong magnetic fields.

## E. 2 Definitions

## E.2.5 magnetic field

the magnetic field in the meaning of this standard is defined by the value of the magnetic induction (flux density). The value is stated in teslas [V.s $/ \mathrm{m}^{2}$ ]

## E.2.5.1

## alternating magnetic field

a magnetic field with alternating direction of the magnetic induction with a fundamental frequency $f$ of 45 Hz to 65 Hz where the reference value is the peak value of the magnetic induction

## E.2.5.2

## constant magnetic field

a magnetic field with a temporal constant value of the magnetic induction, where the reference value is the mean value of the magnetic induction. A total ripple content of $\pm 5 \%$ is allowed

## E.2.5.3 Immunity

## E.2.5.3.1

## immunity to an alternating magnetic field

a proximity switch is immune to an alternating magnetic field when the state of the output is not changed by the influence of the alternating magnetic field under specified conditions

## E.2.5.3.2

## immunity to a constant magnetic field

a proximity switch is immune to a constant magnetic field if the change - due to the influence of the constant magnetic field - of the effective operating distance $\left(s_{r}\right)$ is not higher than the value specified

## E. 3 Classification

## According to Table 1 with the following addition: <br> E.3.7 Classification according to the type of the influencing magnetic fiate. <br> E.3.7.1 Immunity to an alternating magnetic field

The immunity to an alternating magnetic field is designedronapal letter $X$, placed in the seventh position.

## E.3.7.2 Immunity to a constant magperidnd

The immunity to a constant maspett fleld is designated by a capital letter Y , placed in the seventh position.

## E.3.7.3 Immunity to an alternating field and to a constant magnetic field

The immunity to both types of magnetic field is designated by a capital letter Z, placed in the seventh position.

## E. 7 Construction and performance requirements

## E.7.2.1.6 Frequency of operating cycles

E.7.2.1.6.1 Inductive and capacitive proximity switches

The frequency of operating cycles shall be stated by the manufacturer, and measured according to 8.5.

## E.7.5 Immunity to a magnetic field

The following values shall be applied:
a) alternating magnetic field maximum

Magnetic induction: 0 to $0,1 \mathrm{~T}$, peak value;
b) constant magnetic field

Magnetic induction: 0 to $0,1 \mathrm{~T}$, mean value.

## E.7.5.1 Performance

E.7.5.1.1 In an alternating magnetic field

The state of the output shall not change when proximity switch tested in accordance with E.8.9.1.

## E.7.5.1.2 In a constant magnetic field

Subclause 7.2.1.3.1 applies, with the following addition for inductive and capacitive proximity switches.

The effective operating distance $\left(s_{r}\right)$ shall not deviate more than $\pm 30 \%$ over the state range of the magnetic field.

Test is made according to E.8.9.2.

## E. 8 Tests

## E.8.9 Verification of immunity

## E.8.9.1 Immunity to an alternating magnetic field

## E.8.9.1.1 Inspection and test sequence (see Figure E.1)

NOTE Other test configurations may be set up.
The test shall be performed as follows:
a) The sensor (1) for measuring the magnt Nield shall be arranged in the centre of the interior of the air-core inductor (4).
b) The air-core inductor (A) unt be energized with alternating current (he oscilloscope (3) shows a peak value of the magnetic induction of $0,1 \mathrm{~T}$. This value $I_{\text {ref }}$ of the current shall be noted.

NOTE To adjust the value $I_{\text {ref }}$, it is allowed to use a phase control up to $30^{\circ}$.
c) The sensor (1) is removed and the proximity switch (I) shall be arranged in the air-core inductor, so that the reference axis of the proximity switch is identical with the axis of the air-core inductor (4) and the sensing face of the proximity switch is at the mid point (L/2) of the air-core inductor.

Tests should be performed with the orientations of the proximity switches in line and perpendicular to the magnetic field.
d) The air-core inductor (4) shall be energized with the value $I_{\text {ref }}$ for an approximate time $t(s)=3 / f$, but not less than $0,1 \mathrm{~s}$.
e) The test according to d) shall be performed;

- with the target located at $3 \times s_{\mathrm{n}}$ from the sensing face;
$-\quad$ with the target located at $1 / 3 \times s_{\mathrm{n}}$ from the sensing face.


## E.8.9.1.2 Results to be obtained

The state of the output shall not change by switching on and switching off $I_{\text {ref }}$ or during the time $I_{\text {ref }}$ current flows in the air-core inductor.

After the test, the effective operating distance $\left(s_{\mathrm{r}}\right)$ shall remain in accordance with 7.2.1.3.1.

NOTE For sensing face diameters larger than 18 mm , the target in the off condition may be removed.


1 Sensor
2 Measuring instrument for the magnetic induction
3 Oscilloscope (to indicate the peak value)
4 Air-core inductor (the number of windings is not stated)
5 AC ammeter
A Alternating current
Proximity switch
D Interior diameter of the air-core inductor $\geq 100 \mathrm{~mm}$
$L$ Length of the air-core inductor $\geq 100 \mathrm{~mm}$
Figure E. 1 - Examples of test configuration for verification of the immunity to an alternating field

## E.8.9.2 Immunity to a constant magnetic field

## E.8.9.2.1 Inspection and test sequence (see Figure E.2)

NOTE Other test configurations may be set up.
The test shall be performed as follows.
a) The sensor (1) for measuring the magnetic induction shall be arranged in the centre of the air gap between the iron cores (3).
b) The inductance coils (4) shall be energized with direct current (A) until the measuring instrument for the magnetic induction (2) shows the magnetic induction of $0,1 \mathrm{~T}$. The value $I_{\text {ref }}$ of the current shall be noted.
c) The sensor (1) is removed and the proximity switch (I) shall be arranged in the middle of the air gap between the iron cores (3) and so that the sensing face is in line with the outsides of the iron cores (3).
d) The effective operating distance $s_{r}$ shall be measured by axis approach of the target with the direct current $A$ being adjusted to each of the following values:

$$
\begin{aligned}
& 0 \quad I_{\text {ref }} \\
& 0,2 I_{\text {ref }} \\
& 0,4 I_{\text {ref }} \\
& 0,6 I_{\text {ref }}
\end{aligned}
$$

$$
\begin{aligned}
& 0,8 I_{\text {ref }} \\
& 1,0 I_{\text {ref }}
\end{aligned}
$$

## E．8．9．2．2

Results to be obtained
In the whole range of the direct current $A$ ，the deviation of the effective oper $⿴ 囗 ⿰ 丿 ㇄$ shall be within $\pm 30 \%$ of the value measured at $0 I_{\text {ref }}$ ．

$\begin{array}{ll}1 & \text { Sensor } \\ 2 & \text { Measuring instrument for the magnetic induction } \\ 3 & \begin{array}{l}\text { Iron core of the magnetic inductor } \\ \text {（inner diameter of iron core }=100 \mathrm{~mm} \text { ）}\end{array} \\ 4 & \text { Inductance coils } \\ 5 & \text { DC ammeter } \\ \text { A } & \text { Direct current } \\ \text { I } & \begin{array}{l}\text { Proximity switch } \\ \Delta S\end{array} \begin{array}{l}\text { Air gap between core }(3)>2 \times \text { proximity switch diameter } \\ \text { with a minimum of } 40 \mathrm{~mm} .\end{array}\end{array}$

NOTE For test purposes，the parts of the proximity switch affected by the magnetic field may be separated from the rest of the switch．

Figure E． 2 －Example of test configuration for verification of the immunity in a constant magnetic field

## Annex F

 (informative)
## Symbols for proximity switches

General symbol


Capacitive proximity switch 2-terminal d.c. NO

Inductive proximity switch
4-terminal d.c. PNP output, NO NC


Retroflective photoelectric proximity switch
3-terminal d.c. NPN output, NO


Ultrasonic proximity switch
2-terminal d.c. NC


Through beam photoelectric proximity switch
3-terminal d.c. NPN output, NC

1


Diffuse reflective photoelectric proximity switch 3-terminal d.c. NPN output, NC


Non-mechanical magnetic proximity switch 3-terminal d.c. PNP output, NO


IEC 1809/07
NOTE It is permitted to have different orientations of the symbols provided that all information required is retained.
Figure F. 1 - Examples of symbols for proximity switches

The following referenced documents are indispensable for the application of this docure dated references, only the edition cited applies. For undated references, the latest editip the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modification indicald by (mod), the relevant EN/HD applies.

Publication	Year	Title	EN/HD	Year
IEC 60050-441 A1	$\begin{aligned} & 1984 \\ & 2000 \end{aligned}$	International Elegind ${ }^{2}$ nical Vocabulary (IEV) -	-	-
IEC 60068-2-6	2007	Environmental testing -   Part 2-6: Tests - Test Fc: Vibration (sinusoidal)	EN 60068-2-6	2008
IEC 60068-2-14	2009	Environmental testing -   Part 2-14: Tests - Test N: Change of temperature	EN 60068-2-14	2009
IEC 60068-2-27	2008	Environmental testing Part 2-27: Tests - Test Ea and guidance: Shock	EN 60068-2-27	2009
IEC 60068-2-30	2005	Environmental testing -   Part 2-30: Tests - Test Db: Damp heat, cyclic   ( $12 \mathrm{~h}+12 \mathrm{~h}$ cycle)	EN 60068-2-30	2005
$\begin{aligned} & \text { IEC } 60364 \\ & \text { (mod) } \end{aligned}$	Series	Low-voltage electrical installations	$\begin{aligned} & \text { HD } 384 \\ & \text { HD } 60364 \end{aligned}$	Series
IEC 60445	2010	Basic and safety principles for man-machine interface, marking and identification Identification of equipment terminals, conductor terminations and conductors	EN 60445	2010
IEC 60947-1	2007	Low-voltage switchgear and controlgear -	EN 60947-1	2007
+ A1	2010	Part 1: General rules	+ A1	2011
IEC 61000-3-2	2005	Electromagnetic compatibility (EMC) -	EN 61000-3-2	2006
+ A1	2008	Part 3-2: Limits - Limits for harmonic current	+ A1	2009
+ A2	2009	emissions (equipment input current $\leq 16 \mathrm{~A}$ per phase)	+ A 2	2009
IEC 61000-3-3	2008	Electromagnetic compatibility (EMC) Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current $\leq 16$ A per phase and not subject to conditional connection	EN 61000-3-3	2008
IEC 61000-4-2	2008	Electromagnetic compatibility (EMC) Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test	EN 61000-4-2	2009
IEC 61000-4-3	2006	Electromagnetic compatibility (EMC) -	EN 61000-4-3	2006
+ A1	2007	Part 4-3: Testing and measurement	+ A1	2008
+ A2	2010	techniques - Radiated, radio-frequency, electromagnetic field immunity test	+ A 2	2010


Publication	Year	Title		Year
IEC 61000-4-4	2004	Electromagnetic compatibility (EMC) -   Part 4-4: Testing and measurement   techniques - Electrical fast transient/burst   immunity test	EN 61000-4-4	

## Annex ZZ

(informative)

## Coverage of Essential Requirements of EC Directives

This European Standard has been prepared under a mandate given to CENELEC p , Commission and the European Free Trade Association and within its scope the staydard covers all relevant essential requirements as given in Article 1 of Annex I of the EC Dirgriz20 4/408/EC.
Compliance with this standard provides one means of connor with the specified essential requirements of the Directive concerned.
WARNING: Other requirements and other EC Dire the scope of this standard.
ray be applicable to the products falling within

## British Standards Institution (BSI)

BSI is the independent national body responsible for preparing British Star ćards and other standards-related publications, information and services. It presenis tine UK view on standards in Europe and at the international level.

## BSI is incorporated by Royal Charter . British Starreaacús and other standardization products are published by BSI Standards L'irimed.

## Revisions

British Standards and PASs are periodically updated by amendment or revision. Users of British Standards and PASs should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using British Standards would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Similary for PASs, please notify BSI Customer Services.
Tel: +44 (0)2089969001 Fax: +44 (0)20 89967001
BSI offers BSI Subscribing Members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of British Standards and PASs.
Tel: +44 (0)20 89967669 Fax: +44 (0)20 89967001
Email: plus@bsigroup.com

## Buying standards

You may buy PDF and hard copy versions of standards directly using a credit card from the BSI Shop on the website www.bsigroup.com/shop. In addition all orders for BSI, international and foreign standards publications can be addressed to BSI Customer Services.

Tel: +44 (0)20 89969001 Fax: +44 (0)20 89967001
Email: orders@bsigroup.com
In response to orders for international standards, BSI will supply the British Standard implementation of the relevant international standard, unless otherwise requested

## Information on standards

BSI provides a wide range of information on national, European and international standards through its Knowledge Centre.

Tel: +44 (0)20 89967004 Fax: +44 (0)20 89967005
Email: knowledgecentre@bsigroup.com
BSI Subscribing Members are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.
Tel: +44 (0)208996 7002 Fax: +44 (0)20 89967001
Email: membership@bsigroup.com
Information regarding online access to British Standards and PASs via British Standards Online can be found at www.bsigroup.com/BSOL
Further information about British Standards is available on the BSI website at www.bsigroup.com/standards

## Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means - electronic, photocopying, recording or otherwise - without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright \& Licensing Department.
Tel: +44 (0)20 89967070
Email: copyright@bsigroup.com

Tel +44 (0)20 89969001
Fax +44 (0)20 89967001
www.bsigroup.com/standards


[^0]:    © 2007 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

[^1]:    1 See IEC 60050(441).

[^2]:    a $d_{3} \mathrm{~min} .=1,13 \mathrm{AF}$.

[^3]:    2 Small cracks of the moulding compounds, if any (see Figure B.1) are acceptable after tests B.8.1.2.3, B.8.1.2.4 and B.8.1.2.5. They shall not impair the results of the final test of B.8.1.2.6.

[^4]:    3 Small cracks of the moulding compounds, if any (see Figure B.1) are acceptable after tests B.8.1.2.3, B.8.1.2.4 and B.8.1.2.5. They shall not impair the results of the final test of B.8.1.2.6.

